39. Kindly consider the following
39. Kindly consider the following
-
1 Answer
-
39. Let f (x) = cos (x3) sin2 (x5).
f' (x) = cos (x3) sin2 (x5) + sin2 (x5) cos (x3)
= cos (x3) 2sin (x5) sin (x5) + sin2 (x5) [sin (x3)] x3.
= 2 cos (x3) sin (x5). cos (x5) (x5) - sin2 (x5) sin (x3). 3x2
= 2. cos (x3) sin (x5) cos (x5). 5 - 3x2sin2 (x5) sin (x3)
= x2 sin (x5). [2x2 cos (x3) cos (x5) - 3 sin (x5) sin x3].
Similar Questions for you
f (x) is an even function
So, f (x) has at least four roots in (-2, 2)
So, g (x) has at least two roots in (-2, 2)
now number of roots of f (x)
It is same as number of roots of will have atleast 4 roots in (-2, 2)
Let
So, f(x) = x
Now,
f(x) = αx – b
option (D) satisfies
option (C) is incorrect, there will be minima.
f (x) = f (6 – x) Þ f' (x) = -f' (6 – x) …. (1)
put x = 0, 2, 5
f' (0) = f' (6) = f' (2) = f' (4) = f' (5) = f' (1) = 0
and from equation (1) we get f' (3) = -f' (3)
So f' (x) = 0 has minimum 7 roots in
h (x) = f' (x) . f' (x)
h' (x) = (f' (x)2 + f' (x) f' (x)
h (x) = 0 has 13 roots in x
h' (x) = 0 has 12 roots in x
|x|- 1| is not differentiable at x = -1, 0, 1
|cospx| is not differentiable at x =
-
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers