42. In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing atleast one of them is 0.95. What is the probability of passing both?

8 Views|Posted 7 months ago
Asked by Shiksha User
1 Answer
A
9 months ago

42. Let A: Student passes 1st examination

So, P (A) = 0.8

And B: Student passes 2nd examination

So, P (B) = 0.7

Also probability of passing at least one examination is P (A∪B) = 0.95

Therefore, P (A∪B) = P (A) + P (B) – P (A∩B)

0.95 = 0.8 + 0.7 – P (A∩B)

P (A∩B) = 0.8 + 0.7 – 0.95

P (A∩B) = 0.55

Hence, proba

...Read more

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

3, 4, 5, 5

In remaining six places you have to arrange

3, 4, 5,5

So no. of ways = 6 ! 2 ! 2 ! 2 !  

Total no. of seven digits nos. = 7 ! 2 ! 3 ! 2 ! * 1  

Hence Req. prob. 6 ! 2 ! 2 ! 2 ! 7 ! 2 ! 3 ! 2 ! = 6 ! 3 ! 2 ! 7 ! = 3 7

 

 

...Read more

z ˜ = i z 2 + z 2 z

z + Z ¯ = z 2 ( i + 1 )

z + Z ¯ = z 2 ( i + 1 ) Let z be equal to (x + iy)

(x + iy) + (x – iy) = (x + iy)2 (i + 1)

2 x = ( x 2 y 2 + 2 i x y ) ( i + 1 )               

Equating the real & in eg part.

( x 2 y 2 + 2 i x y ) = 0 . . . . . . . . . ( i )

( x 2 y 2 2 x y ) = ( 2 x ) . . . . . . . . . . . . . . ( i i )               

(i) & (ii)

 4xy = -2x Þ x = 0 or y = ( 1 2 )  

(for x = 0, y = 0)

For y = 1 2

...Read more

Each element of ordered pair (i, j) is either present in A or in B.

So, A + B = Sum of all elements of all ordered pairs {i, j} for 1i10 and 1j10

= 20 (1 + 2 + 3 + … + 10) = 1100

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Probability 2025

Maths Probability 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering