43. Find a unit vector perpendicular to each of the vectors
43. Find a unit vector perpendicular to each of the vectors
Given,
A vector which is perpendicular to both and is given by

Say

Therefore, the unit vector is
Similar Questions for you
6.00
b·a = c·a
|a+b-c|² = |a|²+|b|²+|c|²+2(a·b - b·c - a·c)
= 4+16+16+2(a·b - 0 - a·b) = 36
⇒ |a+b-c| = 6
(a+3b). (7a-5b) = 7|a|² - 5ab + 21ab - 15|b|² = 7|a|²+16ab-15|b|²=0.
(a-4b). (7a-2b) = 7|a|² - 2ab - 28ab + 8|b|² = 7|a|²-30ab+8|b|²=0.
Subtracting: 46ab - 23|b|² = 0 ⇒ 2ab = |b|².
Substituting: 7|a|² + 8|b|² - 15|b|² = 0 ⇒ 7|a|² = 7|b|² ⇒ |a|=|b|.
cosθ = ab/ (|a|b|) = ab/|b|² = (1/2)|b|²/|b|² = 1/2.
θ
a×b=c ⇒ a.c=0, b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a×c.
a×c = a× (a×b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1
|a × b|² + |a . b|² = |a|²|b|²
8² + (a . b)² = 2² * 5²
64 + (a . b)² = 100
(a . b)² = 36
a . b = 6 (since angle seems acute from options, but could be -6).
a = i + j + 2k
b = -i + 2j + 3k
a + b = 3j + 5k
a . b = -1 + 2 + 6 = 7
a × b = |i, j, k; 1, 2; -1, 2, 3| = -i - 5j + 3k
(a - b) × b) = (a × b) - (b × b) =
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering
