44. If a unit vector  a  makes an angle π/3 with  i^,π4withj^   and an acute angle θ with  k^  then find θ and hence, the components of  a .

10 Views|Posted 8 months ago
Asked by Shiksha User
1 Answer
V
8 months ago

Let a=(a1,a2,a3) as component

We know,

a is a unit vector, |a|=1

Given that,

a marks angles π3 with i^ , π4 with j^ and θ with k^ acute angle.

Now,

cosπ3=a1|a|12=a1[|a|=1]cosπ4=a2|a|⇒1/√2
=a2cosθ=a3|a|a3=cosθ

We know,

|a|=1

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

(a+3b). (7a-5b) = 7|a|² - 5ab + 21ab - 15|b|² = 7|a|²+16ab-15|b|²=0.
(a-4b). (7a-2b) = 7|a|² - 2ab - 28ab + 8|b|² = 7|a|²-30ab+8|b|²=0.
Subtracting: 46ab - 23|b|² = 0 ⇒ 2ab = |b|².
Substituting: 7|a|² + 8|b|² - 15|b|² = 0 ⇒ 7|a|² = 7|b|² ⇒ |a|=|b|.
cosθ = ab/ (|a|b|) = ab/|b|² = (1/2)|b|²/|b|² = 1/2.
θ

...Read more

a×b=c ⇒ a.c=0,  b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a×c.
a×c = a× (a×b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1

...Read more

|a × b|² + |a . b|² = |a|²|b|²
8² + (a . b)² = 2² * 5²
64 + (a . b)² = 100
(a . b)² = 36
a . b = 6 (since angle seems acute from options, but could be -6).

a = i + j + 2k
b = -i + 2j + 3k
a + b = 3j + 5k
a . b = -1 + 2 + 6 = 7
a × b = |i,  j,  k; 1, 2; -1, 2, 3| = -i - 5j + 3k
(a - b) × b) = (a × b) - (b × b) =

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers

Learn more about...

Maths Vector Algebra 2021

Maths Vector Algebra 2021

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering