47. Probability that A speaks truth is 4/5 A coin is tossed. A report that a head appears. The probability that actually there was head is:

(A) 4/5

(B) 1/2

(C) 1/5

(D) 2/5

12 Views|Posted 8 months ago
Asked by Shiksha User
1 Answer
A
8 months ago

47. Let, E1 and E2 be the event such that

E1: A speak truth

E2: A speak false

X: that head appears

P(E1)=45 and P(E2)=1P(E1) = =145=15

If a coin tossed, then it may result either head (H) or tail (T) . The probability of getting a head is 12 whether A speak truth or not.

P(X/E1)=P(X/E2)=12

The probability that there are actually a head is given by P(E1/X)

P(E1/X)=P(E1).P(X/E1)P(E1).P(X/E1)+P(E2).P(X/E2)

=45*1245*12+45*12

=45*1212(45+15)=45

Option (A) is correct 45

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

P (2 obtained on even numbered toss) = k (let)

P (2) = 1 6  

P (  2 ¯ )= 5 6  

k = 5 6 × 1 6 + ( 5 6 ) 3 × 1 6 + ( 5 6 ) 5 × 1 6 + . . .

= 5 6 × 1 6 1 ( 5 6 ) 2

= 5 1 1

...Read more

If x = 0, y = 6, 7, 8, 9, 10

If x = 1, y = 7, 8, 9, 10

If x = 2, y = 8, 9, 10

If x = 3, y = 9, 10

If x = 4, y = 10

If x = 5, y = no possible value

Total possible ways = (5 + 4 + 3 + 2 + 1) * 2

= 30

Required probability  = 3 0 1 1 * 1 1 = 3 0 1 2 1

...Read more

P (2W and 2B) = P (2B, 6W) × P (2W and 2B)

+ P (3B, 5W) × P (2W and 2B)

+ P (4B, 4W) × P (2W and 2B)

+ P (5B, 3W) × P (2W and 2B)

+ P (6B, 2W) × P (2W and 2B)

(15 + 30 + 36 + 30 + 15)

           

= 3 6 1 2 6

= 1 8 6 3

= 6 2 1

= 2 7

             

...Read more

Let probability of tail is   1 3

Probability of getting head = 2 3  

Probability of getting 2 heads and 1 tail

= ( 2 3 × 2 3 × 1 3 ) × 3

= 4 2 7 × 3

= 4 9                  

                  &nb

...Read more

ax2 + bx + c = 0

D = b2 – 4ac

D = 0

b2 – 4ac = 0

b2 = 4ac

(i) AC = 1, b = 2 (1, 2, 1) is one way

(ii) AC = 4, b = 4

a = 4 c = 1 a = 2 c = 2 a = 1 c = 4 } 3 w a y s

(iii) AC = 9, b = 6, a = 3, c = 3 is one way

1 + 3 + 1 = 5 way

Required probability = 5 2 1 6   

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers

Learn more about...

Maths Probability 2025

Maths Probability 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering