49. Out of 100 students, two sections of 40 and 60 are formed. If you and your friendare among the 100 students, what is the probability that

(a) You both enter the same section?

(b) You both enter the different sections?

3 Views|Posted 9 months ago
Asked by Shiksha User
1 Answer
A
9 months ago

49. Here, out of 100 students, first section has 40 students and the rest I e, 60 students enters in second section.

As me and my friend are among the 100 students.

The no. of ways of selecting 2 students from the 100 students

= 100C2

(a) When both enters first section if 2 of us are among the 40 stud

...Read more

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

3, 4, 5, 5

In remaining six places you have to arrange

3, 4, 5,5

So no. of ways = 6 ! 2 ! 2 ! 2 !  

Total no. of seven digits nos. = 7 ! 2 ! 3 ! 2 ! * 1  

Hence Req. prob. 6 ! 2 ! 2 ! 2 ! 7 ! 2 ! 3 ! 2 ! = 6 ! 3 ! 2 ! 7 ! = 3 7

 

 

...Read more

z ˜ = i z 2 + z 2 z

z + Z ¯ = z 2 ( i + 1 )

z + Z ¯ = z 2 ( i + 1 ) Let z be equal to (x + iy)

(x + iy) + (x – iy) = (x + iy)2 (i + 1)

2 x = ( x 2 y 2 + 2 i x y ) ( i + 1 )               

Equating the real & in eg part.

( x 2 y 2 + 2 i x y ) = 0 . . . . . . . . . ( i )

( x 2 y 2 2 x y ) = ( 2 x ) . . . . . . . . . . . . . . ( i i )               

(i) & (ii)

 4xy = -2x Þ x = 0 or y = ( 1 2 )  

(for x = 0, y = 0)

For y = 1 2

...Read more

Each element of ordered pair (i, j) is either present in A or in B.

So, A + B = Sum of all elements of all ordered pairs {i, j} for 1i10 and 1j10

= 20 (1 + 2 + 3 + … + 10) = 1100

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Probability 2025

Maths Probability 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering