Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
51. Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4 (vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
51. Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4 (vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
-
1 Answer
-
(i) On Q the operation* is defined as a*b=a-b.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(ii) On Q the operation* is defined as a*b=a2+b.
For , we have:
Thus, the operation* is commutative.
It can be observed that:
Thus, the operation* is not commutative.
(iii) On Q the operation* is defined as a*b=a+ab.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(iv) On Q the operation* is defined as a*b=(a-b)2
For , we have:
Thus, the operation* is commutative
...more(i) On Q the operation* is defined as a*b=a-b.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(ii) On Q the operation* is defined as a*b=a2+b.
For , we have:
Thus, the operation* is commutative.
It can be observed that:
Thus, the operation* is not commutative.
(iii) On Q the operation* is defined as a*b=a+ab.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(iv) On Q the operation* is defined as a*b=(a-b)2
For , we have:
Thus, the operation* is commutative.
It can be observed that:
Thus, the operation* is not associative.
(v) On Q the operation* is defined as a.b=ab/4
For , we have:
Thus, the operation* is commutative.
For , we have:
Thus, the operation* is associative.
(vi) On Q the operation* is defined as a*b=ab2
It can be observed that:
Thus, the operation* is not commutative.
It can be observed that:
Thus, the operation* is not associative.
Hence, the operations defined (ii), (iv), (v) are commutative and the operation defined in (v) is associative.
less<p><strong>(i) </strong>On Q the operation* is defined as a*b=a-b.</p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>"</mo><mi>a</mi><mi>n</mi><mi>d</mi><mo>"</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mo>−</mo><mn>3</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>≠</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not commutative.</p><p>It can also be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mo>−</mo><mn>3</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>−</mo><mn>1</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>≠</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not associative.</p><p><strong>(ii) </strong>On Q the operation* is defined as a*b=a<sup>2</sup>+b.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> , we have:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mi>a</mi><mo>.</mo><mi>b</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>b</mi><mo>.</mo><mi>a</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mi>a</mi><mo>*</mo><mi>b</mi><mo>=</mo><mi>b</mi><mo>*</mo><mi>a</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is commutative.</p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>*</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>*</mo><mn>3</mn><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mn>2</mn><mo>+</mo><mn>2</mn><mn>2</mn></mrow><mo>)</mo></mrow><mo>*</mo><mn>3</mn><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mn>4</mn></mrow><mo>)</mo></mrow><mo>*</mo><mn>3</mn><mo>=</mo><mn>5</mn><mo>*</mo><mn>3</mn><mo>=</mo><mn>5</mn><mn>2</mn><mo>+</mo><mn>3</mn><mn>2</mn><mo>=</mo><mn>2</mn><mn>5</mn><mo>+</mo><mn>9</mn><mo>=</mo><mn>3</mn><mn>4</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>1</mn><mo>*</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>*</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>*</mo><mrow><mo>(</mo><mrow><mn>2</mn><mn>2</mn><mo>+</mo><mn>3</mn><mn>2</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>*</mo><mrow><mo>(</mo><mrow><mn>4</mn><mo>+</mo><mn>9</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>*</mo><mn>1</mn><mn>3</mn><mo>=</mo><mn>1</mn><mn>2</mn><mo>+</mo><mn>1</mn><mn>3</mn><mn>2</mn><mo>=</mo><mn>1</mn><mo>+</mo><mn>1</mn><mn>6</mn><mn>9</mn><mo>=</mo><mn>1</mn><mn>7</mn><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>*</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>*</mo><mn>3</mn><mo>≠</mo><mn>1</mn><mo>*</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>*</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not commutative.</p><p><strong>(iii)</strong> On Q the operation* is defined as a*b=a+ab.</p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>2</mn><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>=</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><mo>.</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>=</mo><mn>4</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>≠</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not commutative.</p><p>It can also be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>.</mo><mn>3</mn><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>.</mo><mn>3</mn><mo>=</mo><mn>3</mn><mo>.</mo><mn>3</mn><mo>=</mo><mn>3</mn><mo>+</mo><mn>3</mn><mo>×</mo><mn>3</mn><mo>=</mo><mn>3</mn><mo>+</mo><mn>9</mn><mo>=</mo><mn>1</mn><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>1</mn><mo>.</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>.</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>8</mn><mo>=</mo><mn>9</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>.</mo><mn>3</mn><mo>≠</mo><mn>1</mn><mo>.</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not associative.</p><p><strong>(iv)</strong> On Q the operation* is defined as a*b=(a-b)<sup>2</sup></p><p>For <span title="Click to copy mathml"><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> , we have:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mi>a</mi><mo>*</mo><mi>b</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mtd></mtr><mtr><mtd><mrow><mi>b</mi><mo>*</mo><mi>a</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mrow><mo>[</mo><mrow><mo>−</mo><mrow><mo>(</mo><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><mo>)</mo></mrow></mrow><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mi>a</mi><mo>*</mo><mi>b</mi><mo>=</mo><mi>b</mi><mo>*</mo><mi>a</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is commutative.</p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>.</mo><mn>3</mn><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo><mn>3</mn><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo><mn>3</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mo>−</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>4</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>1</mn><mo>.</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>.</mo><mn>3</mn><mo>≠</mo><mn>1</mn><mo>.</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not associative.</p><p><strong>(v) </strong>On Q the operation* is defined as a.b=ab/4</p><p>For <span title="Click to copy mathml"><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> , we have:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mi>a</mi><mo>.</mo><mi>b</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mi>b</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mi>b</mi><mfrac><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mi>b</mi><mo>.</mo><mi>a</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mi>a</mi><mo>*</mo><mi>b</mi><mo>=</mo><mi>b</mi><mo>*</mo><mi>a</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is commutative.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> , we have:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mi>a</mi><mo>.</mo><mi>b</mi></mrow><mo>)</mo></mrow><mo>.</mo><mi>c</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mi>b</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>.</mo><mi>c</mi><mo>=</mo><mfrac><mrow><mfrac><mrow><mi>a</mi><mi>b</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>.</mo><mi>c</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow><mrow><mn>1</mn><mn>6</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mi>a</mi><mo>.</mo><mrow><mo>(</mo><mrow><mi>b</mi><mo>.</mo><mi>c</mi></mrow><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mo>.</mo><mi>b</mi><mfrac><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mo>.</mo><mfrac><mrow><mi>b</mi><mi>c</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow><mrow><mn>1</mn><mn>6</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mo>∴</mo><mrow><mo>(</mo><mrow><mi>a</mi><mo>*</mo><mi>b</mi></mrow><mo>)</mo></mrow><mo>*</mo><mi>c</mi><mo>≠</mo><mi>a</mi><mo>*</mo><mrow><mo>(</mo><mrow><mi>b</mi><mo>*</mo><mi>c</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is associative.</p><p><strong>(vi)</strong> On Q the operation* is defined as a*b=ab<sup>2</sup></p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>≠</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not commutative.</p><p>It can be observed that:</p><p><span title="Click to copy mathml"><math><mtable columnalign="left"><mtr><mtd><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>]</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>8</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mn>8</mn><mo>×</mo><mn>1</mn><mn>6</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mo>]</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn><mn>8</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn><mn>8</mn></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mo>×</mo><msup><mrow><mrow><mo>(</mo><mrow><mn>4</mn><mn>8</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>∴</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>≠</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>∈</mo><mi>Q</mi></mrow></mtd></mtr></mtable></math></span></p><p>Thus, the operation* is not associative.</p><p>Hence, the operations defined (ii), (iv), (v) are commutative and the operation defined in (v) is associative.</p>
Similar Questions for you
R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}
n (R1) = 66
R2 = {a is integral multiple of b}
So n (R1 – R2) = 66 – 20 = 46
as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}


⇒ (y, x) ∈ R V (x, y) ∈ R
(x, y) ∈ R ⇒ 2x = 3y and (y, x) ∈ R ⇒ 3x = 2y
Which holds only for (0, 0)
Which does not belongs to R.
∴ Value of n = 0
f is increasing function
x < 5x < 7x

f (x) < f (5x) < f (7x)
->
Given f (k) =
Case I : If x is even then g (x) = x . (i)
Case II : If x is odd then g (x + 1) = x + 1 . (ii)
From (i) & (ii), g (x) = x, when x is even
So total no. of functions = 105 × 1 = 105
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers
Learn more about...
-
Maths Relations and Functions 2025 Exam
View Exam Details -
Maths Ncert Solutions class 12th 2023 Exam
View Exam Details
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts