56. Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
and
56. Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
and
-
1 Answer
-
Let the required line be parallel to the vector given by,
The position vector of the point (1, 2, − 4) is
The equation of the line passing through (1, 2, −4) and parallel to vector is
The equations of the lines are
Line (1) and line (2) are perpendicular to each other.
Also, line (1) and line (3) are perpendicular to each other.
From equations (4) and (5), we obtain
Direction ratios of are 2, 3, and 6.
Substituting in equation (1), we obtain
This is the equation of the required line.
Similar Questions for you
....(1)
Let
Let
Put l1 and l2 in (1)
α = 3
Given , ,
Dot product with on both sides
... (1)
Dot product with on both sides
... (2)
(a – 1) × 2 + (b – 2) × 5 + (g – 3) × 1 = 0
2a + 5b + g – 15 = 0
Also, P lie on line
a + 1 = 2λ
b – 2 = 5λ
g – 4 = λ
2 (2λ – 1) + 5 (5λ + 2) + λ + 4 – 15 = 0
4λ + 25λ + λ – 2 + 10 + 4 – 15 = 0
30λ – 3 = 0
a + b + g = (2λ – 1) + (5λ + 2) + (λ + 4)

Take
x = 2λ + 1, y = 3λ + 2, z = 4λ + 3
= (α − 2)
Now,
(α − 2) ⋅ 2 + (β − 3) ⋅3 + (γ − 4) ⋅ 4 = 0
2α − 4 + 3β − 9 + 4γ −16 = 0
⇒ 2α + 3β + 4γ = 29
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers