61. Find the equations of the tangent and normal to the hyperbola

x2a2y2b2=1 at the point (x0,y0)

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    The given eqn of the hyperbola is x2a2y2b2=1 ______(1)

    Differentiating eqn (1) wrt ‘x’ we get,

    2xa22yb2dydx=0

    2yb2dydx=2xa2

    dydx=b2xa2y

    dydx|(x,y)=(x0,y0)b2x0a2y0 is the reqd slope of tangent to the curve

    So, eqn of tangent at point (x0,y0) is

    yy0=b2x0a2y0(xx0).

    yy0b2y02b2=xx0a2x02a2

    xx0a2yy0b2=x02a2y02b2

    As (x0,y0) lies on the parabola given by eqn (1) we write,

    x02a2y02b2=1

    Hence, xx0a2yy0b2=1

Similar Questions for you

R
Raj Pandey

y (x) = ∫? (2t² - 15t + 10)dt
dy/dx = 2x² - 15x + 10.
For tangent at (a, b), slope is m = dx/dy = 1 / (dy/dx) = 1 / (2a² - 15a + 10).
Given slope is -1/3.
2a² - 15a + 10 = -3
2a² - 15a + 13 = 0 (The provided solution has 2a²-15a+7=0, suggesting a different problem or a typo)
Following the image: 2a² - 15a + 7 = 0
(2a - 1) (a - 7) = 0
a = 1/2 or a = 7.
a = 1/2 Rejected as a > 1. So a = 7.
b = ∫? (2t² - 15t + 10)dt = [2t³/3 - 15t²/2 + 10t] from 0 to 7.
6b = [4t³ - 45t² + 60t] from 0 to 7 = 4 (7)³ - 45 (7)² + 60 (7) = 1372 - 2205 + 420 = -413.
|a + 6b| = |7 - 413| = |-406|

...more
R
Raj Pandey

f' (c) = 1 + lnc = e/ (e-1)
lnc = e/ (e-1) - 1 = (e - (e-1)/ (e-1) = 1/ (e-1)
c = e^ (1/ (e-1)

R
Raj Pandey

C D = ( 1 0 + x 2 ) 2 ( 1 0 x 2 ) 2 = 2 1 0 | x |

Area 

= 1 2 × C D × A B = 1 2 × 2 1 0 | x | ( 2 0 2 x 2 )

1 0 x 2 = 2 x

3x2 = 10

 x = k

3k2 = 10

V
Vishal Baghel

By truth table

So F1 (A, B, C) is not a tautology

Now again by truth table

So      F2 (A, B) be a tautology.

V
Vishal Baghel

From option let it be isosceles where AB = AC then

x = r 2 ( h r ) 2            

r 2 h 2 r 2 + 2 r h

x = 2 h r h 2 . . . . . . . . ( i )

 Now ar ( Δ A B C ) = Δ = 1 2 B C × A L

Δ = 1 2 × 2 2 h r a 2 × h        

then  x = 2 × 3 r 2 × r 9 r 2 4 = 3 2 r f r o m ( i )

B C = 3 r    

So A B = h 2 + x 2 = 9 r 2 4 + 3 r 2 4 = 3 r .

Hence Δ be equilateral having each side of length 3 r .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post