75. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is  1100   What is the probability that he will win a prize:

(a) At least once  

(b) Exactly once  

(c) At least twice?

2 Views|Posted 8 months ago
Asked by Shiksha User
1 Answer
A
8 months ago

75. Let X represent the number of winning prizes in 50 lotteries. The trials are Bernoulli trials.

Clearly, X has a binomial distribution with n = 50 and p = 1/100

q=1p=11100=99100P(X=x)=nCx
qnxpx=50Cx
(99100)50x.(1100)x

P (winning at least once) =P(X1)

=1P(X<1)=1P(X=1)=150C0

(99100)50=11.(99100)50=1(99100)50

P (winning exactly once) =P(X=1)

=50C1

(99100)49.(1100)1=50(1100)(99100)49=12(99100)49

P (at least twice) =P(X2)

=1P(X<2)=1P(X1)=1[P(X=0)+P(X=1)]=[1P(X=0)]P(X=1)=1(99100)5012.(99100)49=1(99100)49.[99100+12]=1(99100)49.(149100)=1(149100)(99100)49

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

P (2 obtained on even numbered toss) = k (let)

P (2) = 1 6  

P (  2 ¯ )= 5 6  

k = 5 6 × 1 6 + ( 5 6 ) 3 × 1 6 + ( 5 6 ) 5 × 1 6 + . . .

= 5 6 × 1 6 1 ( 5 6 ) 2

= 5 1 1

...Read more

If x = 0, y = 6, 7, 8, 9, 10

If x = 1, y = 7, 8, 9, 10

If x = 2, y = 8, 9, 10

If x = 3, y = 9, 10

If x = 4, y = 10

If x = 5, y = no possible value

Total possible ways = (5 + 4 + 3 + 2 + 1) * 2

= 30

Required probability  = 3 0 1 1 * 1 1 = 3 0 1 2 1

...Read more

P (2W and 2B) = P (2B, 6W) × P (2W and 2B)

+ P (3B, 5W) × P (2W and 2B)

+ P (4B, 4W) × P (2W and 2B)

+ P (5B, 3W) × P (2W and 2B)

+ P (6B, 2W) × P (2W and 2B)

(15 + 30 + 36 + 30 + 15)

           

= 3 6 1 2 6

= 1 8 6 3

= 6 2 1

= 2 7

             

...Read more

Let probability of tail is   1 3

Probability of getting head = 2 3  

Probability of getting 2 heads and 1 tail

= ( 2 3 × 2 3 × 1 3 ) × 3

= 4 2 7 × 3

= 4 9                  

                  &nb

...Read more

ax2 + bx + c = 0

D = b2 – 4ac

D = 0

b2 – 4ac = 0

b2 = 4ac

(i) AC = 1, b = 2 (1, 2, 1) is one way

(ii) AC = 4, b = 4

a = 4 c = 1 a = 2 c = 2 a = 1 c = 4 } 3 w a y s

(iii) AC = 9, b = 6, a = 3, c = 3 is one way

1 + 3 + 1 = 5 way

Required probability = 5 2 1 6   

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers

Learn more about...

Maths Ncert Solutions class 12th 2026

Maths Ncert Solutions class 12th 2026

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering