8. Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
8. Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
8. Let P(x, y, z) be the point equidistant from the given points (1, 2, 3) say A and (3, 2, –1) say B.
So, PA = PB
=> =
Squaring both sides,
=> =
=>
=>
=>
=>
=>
=>
Therefore, the required equation of point is
Similar Questions for you
Direction ratio of line (1, -1, -6)
Equation of line (x−3)/1 = (y+4)/-1 = (z+5)/-6 =k
x=k+3, y=−k−4, z=−6k−5
Solving with plane k=−2
⇒x=1, y=−2, z=7
⇒Distance=√ (3−1)²+6²+3²=√49=7
Any point on line (1)
x=α+k
y=1+2k
z=1+3k
Any point on line (2)
x=4+Kβ
y=6+3K
Z=7+3K?
⇒1+2k=6+3K, as the intersect
∴1+3k=7+3K?
⇒K=1, K? =−1
x=α+1; x=4−β
⇒y=3; y=3
z=4; z=4
Equation of plane
x+2y−z=8
⇒α+1+6−4=8 . (i)
and 4−β+6−4=8 . (ii)
Adding (i) and (ii)
α+5−β+12−8=16
α−β+17=24
⇒α−β=7
f (x)= {sinx, 0≤x<π/2; 1, π/2≤x≤π 2+cosx, x>π}
f' (x)= {cosx, 0
f' (π/2? ) = 0
f' (π/2? ) = 0
f' (π? ) = 0
f' (π? ) = 0
⇒ f (x) is differentiable in (0, ∞)
Let direction ratio of the normal to the required plane are l, m, n
Equation of required plane
11 (x – 1) + 1 (y – 2) + 17 (z + 3) = 0
Any point on line
5r + 12 = 17
r = 1
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2023
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering