97. Find the sum of the first n terms of the series: 3+ 7 +13 +21 +31 +…
97. Find the sum of the first n terms of the series: 3+ 7 +13 +21 +31 +…
-
1 Answer
-
97. The given series is 3+7+13+21+31+ ……. upto n terms
So, Sum, Sn = 3+7+13+21+31+ ………….+ an-1 + an
Now, taking,
Sn = Sn = [ 3 + 7 + 13 + 21 + 31 + ………. an-1 + an ] [ 3+ 7 + 21 + 31 + … an-1 + an]
0 = [ 3+ (7 - 3) + (13 - 7) + (13 - 7) + (21 - 13) + …….+ (an an-1) - an]
0 = 3 + [ 4 + 6 + 8 +…….+ (n-1) terms] an
{ 4 + 6 + 8 + ……. is sum of A.P. of n 1 terms with a = 4, d = 6- 4 = 2}
an = 3 + n2 + (1 + 2) n + (-1) (2) { (a + b) (a + b) = a2 + (b + c) a + bc }
an = 3 + n2 + n- 2 = n2 + n +1
sum of series,
Similar Questions for you
First term = a
Common difference = d
Given: a + 5d = 2 . (1)
Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)
Using (1)
P = (2 – 5d) (2 – d) (2 – 2d)
-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)
= –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2) + (d – 1) (5d – 2) + 5 (d – 1) (d – 2)]
= –2 [15d2 – 34d + 16]
at
-> d = 1.6
a, ar, ar2, ….ar63
a+ar+ar2 +….+ar63 = 7 [a + ar2 + ar4 +.+ar62]
1 + r = 7
r = 6
S20 = [2a + 19d] = 790
2a + 19d = 79 . (1)
2a + 9d = 29 . (2)
from (1) and (2) a = –8, d = 5
= 405 – 10
= 395
3, 7, 11, 15, 19, 23, 27, . 403 = AP1
2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2
so common terms A.P.
11, 23, 35, ., 395
->395 = 11 + (n – 1) 12
->395 – 11 = 12 (n – 1)
32 = n – 1
n = 33
Sum =
=
= 6699
3, a, b, c are in A.P.
a – 3 = b – a (common diff.)
2a = b + 3
and 3, a – 1, b + 1 are in G.P.
a2 + 1 – 2a = 3b + 3
a2 – 8a + 7 = 0 &n
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers