Consider a set of 3n numbers having variance 4. In this set, the mean of first 2n numbers is 6 and the mean of the remaining n number is 3. A new set is constructed by adding 1 into each of first 2n numbers, and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then 9k is equal to ______.

10 Views|Posted 5 months ago
Asked by Shiksha User
1 Answer
A
5 months ago

Let X1, ., X2n be the first 2n observations and Y1, ., Yn be the last n observations.
Given:
ΣXi / 2n = 6 => ΣXi = 12n (i)
ΣYi / n = 3 => ΣYi = 3n (ii)

Combined mean: (ΣXi + ΣYi) / 3n = 5 => ΣXi + ΣYi = 15n. This is consistent with (i) and (ii).

Combined variance: (ΣXi^2 + ΣYi^2) / 3n - (mean)^2 = 4
(ΣXi

...Read more

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

It's difficult but in some colleges you may can get 

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

...Read more

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Applications of Derivatives 2025

Maths Applications of Derivatives 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering