∫(cos 4x-1)/(cot x-tan x) dx is equal to
∫(cos 4x-1)/(cot x-tan x) dx is equal to
Option 1 -
-1/2 cos 4x + C
Option 2 -
-1/4 cos 4x + C
Option 3 -
-1/2 sin 2x + C
Option 4 -
1/4 ln |cos 2x| - (cos² 2x)/4 + C
-
1 Answer
-
Correct Option - 4
Detailed Solution:I = ∫ (cos 4x-1)/ (cot x-tan x) dx = ∫ (2 cos² 2x-1-1)/ (cos²x-sin²x)/ (sin x cos x) dx
= 2 ∫ (cos² 2x-1) sin x cos x) / (cos 2x) dx = ∫ (cos² 2x-1) sin 2x) / (cos 2x) dx
Put cos 2x = t
-2 sin 2x dx = dt
I = -1/2 ∫ (t²-1)/t dt = 1/2 ∫ (1/t - t) dt
= 1/2 (ln|t| - t²/2) + c
= 1/2 ln|cos 2x| - 1/4 cos² (2x) + c
Similar Questions for you
dx
Let sin x = t
a = b = 2
Let sin = t
d
sin = t
cos . d = dt
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers