Define Upper and Lower Triangular Matrices.
Define Upper and Lower Triangular Matrices.
An upper triangular matrix is a square matrix where all the elements above the diagonal are non-zero, and below it is zero. A lower triangular matrix is a square matrix where all the elements above the diagonal are zero.
Similar Questions for you
Let
Given ...(1)
∴ x1 + z1 = 2 … (2)
x2 + z2 = 0 … (3)
x3 + z3 = 0 &nb
g (x) = px + q
Compare 8 = ap2 …………… (i)
-2 = a (2pq) + bp
0 = aq2 + bq + c
=>4x2 + 6x + 1 = apx2 + bpx + cp + q
=> Andhra Pradesh = 4 ……………. (ii)
6 = bp
1 = cp + q
From (i) & (ii), p = 2, q = -1
=> b = 3, c = 1, a = 2
f (x) = 2x2 + 3x + 1
f (2) = 8 + 6 + 1 = 15
g (x) = 2x – 1
g (2) = 3
Kindly consider the following figure
B = (I – adjA)5
Kindly consider the following figure
B = (I – adjA)5
System of equation is
R1 – 2 R2, R3 – R2
System of equation will have no solution for
= -7.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering
