From the base of a pole of height 20 meter, the angle of elevation of the top of tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is:
From the base of a pole of height 20 meter, the angle of elevation of the top of tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is:
Option 1 -
Option 2 -
Option 3 -
Option 4 -
30
-
1 Answer
-
Correct Option - 4
Detailed Solution:Let base = b
Similar Questions for you
For this limit to be defined 2x3 – 7x2 + ax + b should also trend to 0 or x ® 1.
2 – 7 + (a + b) = 0
(a + b) = 5 …………….(i)
Now this becomes % form we apply L’lopital rule
Now the numerator again ® 0 as x = 1
6x2 – 14x + a ® 0 as x = 1
6 . (1)2 – 14 + a = 0
a = 8 …………….(ii)
a + b = 5
(b = -3) ® from (i) & (ii)
So
When x = 0, y = 0 gives
So, for x = 2, y = 12
24. Let P (n) be the statement “ 2n+7< (n+3)2”
ofn=1
P (1): 2
9<16 which is true. This P (1) is true.
Suppose P (k) is true.
P (k)= 2k+7< (k+3)2 . (1)
Lets prove that P (k +1) is also true.
“ 2 (k + 1) + 7 < (k + 4)2=k2+ 8k + 16”
P (k +1) = 2 (k +1) +7 = (2k +7) +2
< (k +3)2+ 2 (Using 1)
= k2+ 9 + 6k +2 = k2+6k +11
Adding and subtracting (2k + k) in the R. H. S.
for all
is true.
By the principle of mathematical induction, P (n)is true for all n N.
23. Let
Put n= 1,
is a multiple of 27.
Which is true.
Assume that P(k) is true for some natural no. k.
P(k)= be a multiple of 27
i.e,
(1)
We want to prove that P(k+1) is also true.
Now,
(Using 1)
is true when P(k) is true.
Hence, by P.M.I. P(n) is true for every positive integer n.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers