How do NCERT Solutions explain the concept of feasible and infeasible regions in Linear Programming?

0 14 Views | Posted 5 months ago
Asked by Nishtha Datta

  • 2 Answers

  • S

    Answered by

    Satyendra Dhyani

    5 months ago

    Shiksha's Class 12 Linear Programming, NCERT Solutions provide clear explanation for the concepts of feasible and infeasible regions;

    • A feasible region is the common area on a graph that satisfies all the given constraints of a linear programming problem, including non-negativity conditions.
    • An infeasible region comprises points that do not satisfy one or more of the problem's constraints. Any point outside the feasible region is considered an infeasible solution.

    Students can use NCERT Solutions to understand the concepts for feasible and infeasible reason in the Linear Programming. 

     

  • E

    Answered by

    Esha Garg

    5 months ago

    Shiksha's Class 12 Linear Programming, NCERT Solutions provide a clear explanation for the concepts of feasible and infeasible regions;

    • A feasible region is the common area on a graph that satisfies all the given constraints of a linear programming problem, including non-negativity conditions (x? 0, y? 0).
    • An infeasible region comprises points that do not satisfy one or more of the problem's constraints. Any point outside the feasible region is considered an infeasible solution.

    Students can use NCERT Solutions to understand the concepts for feasible and infeasible reason in the Linear Programming. 

Similar Questions for you

A
alok kumar singh

Δ | 3 2 k 2 4 2 1 2 1 | = | 3 2 k 0 8 0 1 2 1 | , [ R 2 R 1 2 R 3 ]

= -8 (-3 + k)

For inconsistent Δ = 0 k = 3  

Δ x = | 1 0 2 k 6 4 2 5 m 2 1 | = 3 2 4 0 m 0 m 4 5              

V
Vishal Baghel

  l = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (i)

I = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (ii)

by using property ( a b f ( x ) d x = a b f ( a + b x ) d x )

Adding (i) and (ii) we get 2l = π 2 π 2 ( 2 ) d x = 2 π l = π

A
alok kumar singh

l n , m = 0 1 2 x n x m 1 d x , m , n N , n > m

l 6 + i , 3 l 3 + i , 3

A = 1 2 5 [ 1 5 1 5 1 5 0 1 1 2 1 1 2 0 0 1 2 8 ] = B 3 2

| A | = ( 1 3 2 ) 3 | B | = 1 1 0 5 . 2 1 9

V
Vishal Baghel

α + β + γ = 2 π

Δ = | 1 c o s γ c o s β c o s γ 1 c o s α c o s β c o s α 1 |

= 1 c o s 2 α c o s 2 β c o s 2 γ + 2 c o s α . c o s β . c o s γ

= c o s γ c o s ( α β ) + c o s γ c o s ( α β ) = 0

V
Vishal Baghel

Given 2x + y – z = 3         . (i)

x – y – z = α        . (ii)

3x + 3y + βz = 3                . (iii)

(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α

For infinite solution 1 + β = 0 = 3 - α

=> α = 3, β = -1

So, α + β - αβ = 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post