(i) If x<y and b<0 , then xb>yb.

(ii) If xy>0 , then x>0 and y<0 .

(iii) If xy>0 , then x<0 and y<0 .

(iv) If xy<0 , then x<0 and y<0 .

(v) If x<5 and x<2 , then x(,5) .

(vi) If x<5 and x>2 , then x(5,2) .

(vii) If x>2 and x<9 , then x(2,9) .

(viii) If ?x?>5 , then x(,5)(5,).

(ix) If ?x?4 , then x[4,4].

(x) Graph of x<3 corresponds to Fig 6.12.

(xi) Graph of x0 corresponds to Fig 6.13.

(xii) Graph of y0 corresponds to Fig 6.14.

(xiii) Solution set of x0 and y0 corresponds to Fig 6.15.

(xiv) Solution set of x0 and y1 corresponds to Fig 6.16.

(xv) Solution set of x+y0 corresponds to Fig 6.17.

0 4 Views | Posted 2 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    2 months ago

    This is a True or False Type Questions as classified in NCERT Exemplar

    ( i ) I f x < y a n d b < 0 x b > y b H e n c e , s t a t e m e n t ( i ) i s F a l s e . ( i i ) I f x , y > 0 t h e n x > 0 , y > 0 o r x < 0 , y < 0 H e n c e , s t a t e m e n t ( i i ) i s F a l s e . ( i i i ) I f x y > 0 t h e n x < 0 , a n d y < 0 H e n c e , s t a t e m e n t ( i i i ) i s T r u e . ( i v ) I f x y < 0 t h e n x < 0 , y > 0 o r x > 0 , y < 0 H e n c e , s t a t e m e n t ( i v ) i s F a l s e . ( v ) I f x < 5 a n d x < 2 x ( , 5 ) H e n c e , s t a t e m e n t ( v ) i s T r u e . ( v i ) I f x < 5 a n d x > 2 t h e n x h a s n o v a l u e . H e n c e , s t a t e m e n t ( v i ) i s F a l s e . ( v i i ) I f x > 2 a n d x < 9 x ( 2 , 9 ) H e n c e , s t a t e m e n t ( v i i ) i s T r u e . ( v i i i ) I f | x | > 5 t h e n x < 5 o r x > 5 x ( , 5 ) ( 5 , ) H e n c e , s t a t e m e n t ( v i i i ) i s F a l s e . ( i x ) I f | x | 4 t h e n 4 x 4 x [ 4 , 4 ] H e n c e , s t a t e m e n t ( i x ) i s T r u e . ( x ) T h e g i v e n g r a p h r e p r e s e n t s x 3 H e n c e , s t a t e m e n t ( x ) i s F a l s e . ( x i ) T h e g i v e n g r a p h r e p r e s e n t s x 0 H e n c e , s t a t e m e n t ( x i ) i s T r u e . ( x i i ) T h e g i v e n g r a p h r e p r e s e n t s y 0 H e n c e , s t a t e m e n t ( x i i ) i s &thins

Similar Questions for you

A
alok kumar singh

  x 2 + y 2 2 2 x 6 2 y + 1 4 = 0

 centre ( 2 , 3 2 )

radius  ( ( 2 ) 2 + ( 3 2 ) 2 1 4 ) 1 / 2

= ( 2 + 1 8 1 4 ) 1 / 2 = ( 6 )

( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2

centre  ( 2 2 , 2 2 )

OA = ( 2 2 2 ) 2 + ( 2 2 3 2 ) 2 = 2 + 2 = 2                  

r2 = ( 6 ) 2 + ( 2 ) 2 = 6 + 4 = 1 0  

 

P
Payal Gupta

Let y = mx + c is the common tangent

soc=1m=±321+m2m2=13

so equation of common tangents will be

y=±13x±3

which intersects at Q (3, 0)

Major axis and minor axis of ellipse are 12 and 6. So eccentricity

e2=114=34

and length of latus rectum

=2b2a=3

Hence

le2=33/4=4

V
Vishal Baghel

z 2 + z + 1 = 0 z = w , w 2

| n = 1 1 5 ( z n + ( 1 ) n 1 z n ) 2 | = | n = 1 1 5 ( z 2 n + 1 z 2 n + 2 ( 1 ) n ) | = | n = 1 1 5 w 2 n + 1 w 2 n + 2 ( 1 ) n |

= | w 2 ( 1 1 ) 1 w 2 + 1 w 2 ( 1 1 ) 1 1 w 2 2 | = 2

P
Payal Gupta

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) 4 x 1 2 x 3 H e n c e , t h e f i l l e r i s ( ) ( i i ) I f 3 4 x 3 x 3 x × 4 3 x 4 H e n c e , t h e f i l l e r i s ( ) ( i i i ) I f 2 x + 2 > 0 x > 2 H e n c e , t h e f i l l e r i s ( > ) ( i v ) I f x > 5 4 x > 2 0 H e n c e , t h e f i l l e r i s ( > ) ( v ) I f x > y a n d z < 0 , t h e n x z < y z x z > y z H e n c e , t h e f i l l e r i s ( > ) ( v i ) I f p > 0 a n d q < 0 , t h e n p q > p H e n c e , t h e f i l l e r i s ( > ) ( v i i ) I f | x + 2 | > 5 t h e n x + 2 < 5 o r x + 2 > 5 x < 5 2 o r x > 5 2 x < 7 o r x > 3 S o , x ( , 7 ) ( 3 , ) H e n c e , t h e f i l l e r i s ( < ) o r ( > ) ( v i i i ) I f 2 x + 1 9 t h e n 2 x 9 1 2 x 8 2 x 8 x 4 H e n c e , t h e f i l l e r i s ( )

P
Payal Gupta

30. 

30. For inequality y+8 ≤ 2x, the equation of the line is y+8=2x. We consider the table below to plot of y+8=2x.

xy|08|40|

The line devides the xy-plane into half planer I and II. We select a point (0,0) and check the correctness of the inequality.

i.e., 0+8 ≤ 2 × 0

0 ≤ 0 which is true.

So, the solution region is I which includes the rigin (0,0). The continuous line also indicates that any points on the line also satisfy the given inequality.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post