LE the common tangents to the curves 4(x2+y2)=9 and y2 = 4x intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and l respectively denote the eccentricity and the length of the latus rectum of this ellipse, then le2 is equal to

0 3 Views | Posted 2 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    2 months ago

    Let y = mx + c is the common tangent

    soc=1m=±321+m2m2=13

    so equation of common tangents will be

    y=±13x±3

    which intersects at Q (3, 0)

    Major axis and minor axis of ellipse are 12 and 6. So eccentricity

    e2=114=34

    and length of latus rectum

    =2b2a=3

    Hence

    le2=33/4=4

Similar Questions for you

A
alok kumar singh

  x 2 + y 2 2 2 x 6 2 y + 1 4 = 0

 centre ( 2 , 3 2 )

radius  ( ( 2 ) 2 + ( 3 2 ) 2 1 4 ) 1 / 2

= ( 2 + 1 8 1 4 ) 1 / 2 = ( 6 )

( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2

centre  ( 2 2 , 2 2 )

OA = ( 2 2 2 ) 2 + ( 2 2 3 2 ) 2 = 2 + 2 = 2                  

r2 = ( 6 ) 2 + ( 2 ) 2 = 6 + 4 = 1 0  

 

V
Vishal Baghel

z 2 + z + 1 = 0 z = w , w 2

| n = 1 1 5 ( z n + ( 1 ) n 1 z n ) 2 | = | n = 1 1 5 ( z 2 n + 1 z 2 n + 2 ( 1 ) n ) | = | n = 1 1 5 w 2 n + 1 w 2 n + 2 ( 1 ) n |

= | w 2 ( 1 1 ) 1 w 2 + 1 w 2 ( 1 1 ) 1 1 w 2 2 | = 2

P
Payal Gupta

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) 4 x 1 2 x 3 H e n c e , t h e f i l l e r i s ( ) ( i i ) I f 3 4 x 3 x 3 x × 4 3 x 4 H e n c e , t h e f i l l e r i s ( ) ( i i i ) I f 2 x + 2 > 0 x > 2 H e n c e , t h e f i l l e r i s ( > ) ( i v ) I f x > 5 4 x > 2 0 H e n c e , t h e f i l l e r i s ( > ) ( v ) I f x > y a n d z < 0 , t h e n x z < y z x z > y z H e n c e , t h e f i l l e r i s ( > ) ( v i ) I f p > 0 a n d q < 0 , t h e n p q > p H e n c e , t h e f i l l e r i s ( > ) ( v i i ) I f | x + 2 | > 5 t h e n x + 2 < 5 o r x + 2 > 5 x < 5 2 o r x > 5 2 x < 7 o r x > 3 S o , x ( , 7 ) ( 3 , ) H e n c e , t h e f i l l e r i s ( < ) o r ( > ) ( v i i i ) I f 2 x + 1 9 t h e n 2 x 9 1 2 x 8 2 x 8 x 4 H e n c e , t h e f i l l e r i s ( )

P
Payal Gupta

This is a True or False Type Questions as classified in NCERT Exemplar

( i ) I f x < y a n d b < 0 x b > y b H e n c e , s t a t e m e n t ( i ) i s F a l s e . ( i i ) I f x , y > 0 t h e n x > 0 , y > 0 o r x < 0 , y < 0 H e n c e , s t a t e m e n t ( i i ) i s F a l s e . ( i i i ) I f x y > 0 t h e n x < 0 , a n d y < 0 H e n c e , s t a t e m e n t ( i i i ) i s T r u e . ( i v ) I f x y < 0 t h e n x < 0 , y > 0 o r x > 0 , y < 0 H e n c e , s t a t e m e n t ( i v ) i s F a l s e . ( v ) I f x < 5 a n d x < 2 x ( , 5 ) H e n c e , s t a t e m e n t ( v ) i s T r u e . ( v i ) I f x < 5 a n d x > 2 t h e n x h a s n o v a l u e . H e n c e , s t a t e m e n t ( v i ) i s F a l s e . ( v i i ) I f x > 2 a n d x < 9 x ( 2 , 9 ) H e n c e , s t a t e m e n t ( v i i ) i s T r u e . ( v i i i ) I f | x | > 5 t h e n x < 5 o r x > 5 x ( , 5 ) ( 5 , ) H e n c e , s t a t e m e n t ( v i i i ) i s F a l s e . ( i x ) I f | x | 4 t h e n 4 x 4 x [ 4 , 4 ] H e n c e , s t a t e m e n t ( i x ) i s T r u e . ( x ) T h e g i v e n g r a p h r e p r e s e n t s x 3 H e n c e , s t a t e m e n t ( x ) i s F a l s e . ( x i ) T h e g i v e n g r a p h r e p r e s e n t s x 0 H e n c e , s t a t e m e n t ( x i ) i s T r u e . ( x i i ) T h e g i v e n g r a p h r e p r e s e n t s y 0 H e n c e , s t a t e m e n t ( x i i ) i s &thins

P
Payal Gupta

30. 

30. For inequality y+8 ≤ 2x, the equation of the line is y+8=2x. We consider the table below to plot of y+8=2x.

xy|08|40|

The line devides the xy-plane into half planer I and II. We select a point (0,0) and check the correctness of the inequality.

i.e., 0+8 ≤ 2 × 0

0 ≤ 0 which is true.

So, the solution region is I which includes the rigin (0,0). The continuous line also indicates that any points on the line also satisfy the given inequality.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post