(i) The order relation is defined on the set of complex numbers.

(ii) Multiplication of a non-zero complex number by i rotates the point about the origin through a right angle in the anti-clockwise direction.

(iii) For any complex number z , the minimum value of ?z+1z? is 1.

(iv) The locus represented by ?z1?=?zi? is a line perpendicular to the join of (1,0) and (0,1) .

(v) If z is a complex number such that z0 and Re(z)=0 , then Im(z2)=0 .

(vi) The inequality ?z4?<?z2? represents the region given by x>3 .

(vii) Let z1 and z2 be two complex numbers such that ?z1+z2?=?z1?+?z2? , then arg(z1z2)=0 .

(viii) 2 is not a complex number.

0 6 Views | Posted 2 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    2 months ago

    This is a True or False Type Questions as classified in NCERT Exemplar

    ( i ) C o m p a r i s o n o f t w o p u r e l y i m a g i n a r y c o m p l e x n u m b e r s i s n o t p o s s i b l e . H o w e v e r , t h e t w o p u r e l y i m a g i n a r y r e a l c o m p l e x n u m b e r s c a n b e c o m p a r e d . S o , i t i s ' F a l s e ' . ( i i ) L e t z = x + y i z . i = ( x + y i ) i = x i y w h i c h r o t a t e s a t a n g l e o f 1 8 0 0 S o , i t i s ' F a l s e ' . ( i i i ) L e t z = x + y i | z | + | z + 1 | = x 2 + y 2 + ( x 1 ) 2 + y 2 T h e v a l u e o f | z | + | z + 1 | i s m i n i m u m w h e n x = 0 , y = 0 i . e . , 1 . H e n c e , i t i s ' T r u e ' . ( i v ) L e t z = x + y i G i v e n t h a t : | z 1 | = | z i | t h e n | x + y i 1 | = | x + y i i | | ( x 1 ) + y i | = | x ( 1 y ) i | ( x 1 ) 2 + y 2 = x 2 + ( 1 y ) 2 ( x 1 ) 2 + y 2 = x 2 + ( 1 y ) 2 x 2 2 x + 1 + y 2 = x 2 + 1 + y 2 2 y 2 x + 2 y = 0 x y = 0 w h i c h i s a s t r a i g h t l i n e . S l o p e = 1 Nowequationofalinethroughthepoint(1,0)and(0,1) y 0 = 1 0 0 1 ( x 1 ) y = x + 1 w h o s e s l o p e = 1 . N o w t h e m u l t i p l i c a t i o n o f t h e s l o p e s o f t w o l i n e s = 1 × 1 = 1 , S o t h e y a r e p e r p e n d i c u l a r . H e n c e , i t i s ' T r u e ' .

    ( v ) L e t z = x + y i , z 0 a n d R e ( z ) = 0 Sincerealpartis0x=0 z = 0 + y i = y i I m ( z 2 ) = y 2 i 2 = y 2 w h i c h i s r e a l . H e n c e , i t i s ' F a l s e ' . ( v i ) G i v e n t h a t : | z 4 | < | z 2 | L e t z = x + y i | x + y i 4 | < | x + y i 2 | | ( x 4 ) + y i | < | ( x 2 ) + y i | ( x 4 ) 2 + y 2 < ( x 2 ) 2 + y 2 ( x 4 ) 2 + y 2 < ( x 2 ) 2 + y 2 ( x 4 ) 2 < ( x 2 ) 2 x 2 8 x + 1 6 < x 2 4 x + 4 8 x + 4 x < 1 6 + 4 4 x < 1 2 x > 3 H e n c e , i t i s ' T r u e ' . ( v i i ) L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | z 1 + z 2 | = | z 1 | + | z

    Similar Questions for you

    A
    alok kumar singh

      | 1 2 2 i + 1 | = α ( 1 2 2 i ) + β ( 1 + i )  

    9 4 + 4 = α ( 1 2 2 i ) + β ( 1 + i )

    5 2 = α ( 1 2 ) + β + i ( 2 α + β )             

    α 2 + β = 5 2      ...(1)

     –2α + β = 0                    …(2)

    Solving (1) and (2)

    α 2 + 2 α = 5 2

    5 2 α = 5 2            

    a = 1

    b = 2

    -> a + b = 3

    A
    alok kumar singh

    z 2 = i z ¯

    | z 2 | = | i z ¯ |

    | z 2 | = | z |

    | z 2 | | z | = 0

    | z | ( | z | 1 ) = 0

    |z| = 0 (not acceptable)

    |z| = 1

    |z|2 = 1

    A
    alok kumar singh

    Given : x2 – 70x + l = 0

    ->Let roots be a and b

    ->b = 70 – a

    ->= a (70 – a)

    l is not divisible by 2 and 3

    ->a = 5, b = 65


    -> 5 1 + 6 5 1 | 6 0 | = | 4 + 8 6 0 | = 1 5

    A
    alok kumar singh

    z1 + z2 = 5

    z 1 3 + z 2 3 = 2 0 + 1 5 i            

      z 1 3 + z 2 3 = ( z 1 + z 2 ) 3 3 z 1 z 2 ( z 1 + z 2 )           

    z 1 3 + z 2 3 = 1 2 5 3 z 1 z 2 ( 5 )            

     ⇒ 20 + 15i = 125 – 15z1z2

    3z1z2 = 25 – 4 – 3i

    3z1z2 = 21– 3i

    z1z2 = 7 – i

    (z1 + z2)2 = 25

    z 1 2 + z 2 2 = 2 5 2 7 ( 7 i )     

    = 11 + 2i

      ( z ? 1 2 + z 2 2 ) 2         = 121 − 4 + 44i

      z 1 4 + z 2 4 + 2 ( 7 i ) 2 = 1 1 7 + 4 4 i

      z 1 4 + z 2 4 = 117 + 44i − 2(49 −1−14i )

    = 21 + 72i

      | Z 1 4 + Z 2 4 | = 7 5

    V
    Vishal Baghel

    x 2 2 ( 3 k 1 ) x + 8 k 2 7 > 0 a > 0 , & D < 0 ,

    a = 1 > 0 and D < 0

    4 (3k – 1)2 – 4 (8k2 – 7) < 0

      ( 9 k 2 + 1 6 k 8 k 2 + 7 < 0 )

    k ( k 4 ) 2 ( k 4 ) < 0

    k ( 2 , 4 )

    K = 3

    Get authentic answers from experts, students and alumni that you won't find anywhere else

    Sign Up on Shiksha

    On Shiksha, get access to

    • 65k Colleges
    • 1.2k Exams
    • 688k Reviews
    • 1800k Answers

    Learn more about...

    Share Your College Life Experience

    Didn't find the answer you were looking for?

    Search from Shiksha's 1 lakh+ Topics

    or

    Ask Current Students, Alumni & our Experts

    ×
    ×

    This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

    Need guidance on career and education? Ask our experts

    Characters 0/140

    The Answer must contain atleast 20 characters.

    Add more details

    Characters 0/300

    The Answer must contain atleast 20 characters.

    Keep it short & simple. Type complete word. Avoid abusive language. Next

    Your Question

    Edit

    Add relevant tags to get quick responses. Cancel Post