If f : R ->R is a function defined by f(x) = [ x 1 ] c o s ( 2 x 1 2 ) π ,  where[.] denotes the greatest integer function, then f is:

Option 1 -

Discontinuous only at x = 1

Option 2 -

Discontinuous at all integral value values of x except at x = 1

Option 3 -

Continuous for every real x

Option 4 -

Continuous only at x = 1

0 3 Views | Posted a month ago
Asked by Shiksha User

  • 1 Answer

  • A

    Answered by

    alok kumar singh | Contributor-Level 10

    a month ago
    Correct Option - 3


    Detailed Solution:

    f ( x ) = [ x 1 ] c o s ( 2 x 2 ) π           

    I f x = k , k I

    then f(x) = 0 as c o s ( 2 k 1 2 ) π = 0 , k I  

    LHL = L t h 0 [ k h 1 ] c o s ( 2 k 2 h 1 2 ) π = L t h 0 ( k 2 ) c o s ( 2 k 1 2 ) π 0  

    R H L = L t h 0 [ k + h 1 ] c o s ( 2 k + 2 h 1 2 ) π = L t h 0 ( k 1 ) c o s ( 2 k 1 2 ) π 0        

    f ( x ) is continuous x R  

Similar Questions for you

V
Vishal Baghel

f (x) is an even function

f ( 1 4 ) = f ( 1 2 ) = f ( 1 2 ) = f ( 1 4 ) = 0  

So, f (x) has at least four roots in (-2, 2)

g ( 3 4 ) = g ( 3 4 ) = 0         

So, g (x) has at least two roots in (-2, 2)

now number of roots of f (x) g " ( x ) = f ' ( x ) g ' ( x ) = 0  

It is same as number of roots of d d x ( f ( x ) g ' ( x ) ) = 0 will have atleast 4 roots in (-2, 2)

V
Vishal Baghel

f ( x ) = x + x 0 1 f ( t ) d t 0 1 t 0 f ( t ) d t

Let 1 + 0 1 f ( t ) d t = α

0 1 t f ( t ) d t = β

So, f(x) = x

Now, α = 0 1 f ( t ) d t + 1

α = 0 1 ( a t β ) d t + 1

β = 0 1 t f ( t ) d t

β = 4 1 3 , α = 1 8 1 3

f(x) = αx – b

= 1 8 x 4 1 3

option (D) satisfies

V
Vishal Baghel

f (x) = f (6 – x) Þ f' (x) = -f' (6 – x) …. (1)

put x = 0, 2, 5

f' (0) = f' (6) = f' (2) = f' (4) = f' (5) = f' (1) = 0

and from equation (1) we get f' (3) = -f' (3)

? f ' ( 3 ) = 0

So f' (x) = 0 has minimum 7 roots in x ? [ 0 , 6 ] ? f ' ' ( x )  has min 6 roots in   x ? [ 0 , 6 ]

h (x) = f' (x) . f' (x)

h' (x) = (f' (x)2 + f' (x) f' (x)

h (x) = 0 has 13 roots in x ?   [0, 6]

h' (x) = 0 has 12 roots in x ? [0, 6]

V
Vishal Baghel

1 + x? - x? = a? (1+x)? + a? (1+x) + a? (1+x)² . + a? (1+x)?
Differentiate
4x³ - 5x? = a? + 2a? (1+x) + 3a? (1+x)².
12x² - 20x³ = 2a? + 6a? (1+x).
Put x = -1
12 + 20 = 2a? ⇒ a? = 16

A
alok kumar singh

Kindly go through the solution 

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post