If f(x) = ∫ [5x⁸ + 7x⁶] / [(x⁷ + x² + 1)²] dx, (x > 0), f(0) = 0 and f(1) = 1/K, then the value of K is ______.
If f(x) = ∫ [5x⁸ + 7x⁶] / [(x⁷ + x² + 1)²] dx, (x > 0), f(0) = 0 and f(1) = 1/K, then the value of K is ______.
-
1 Answer
-
f (x) = ∫ (5x? + 7x? ) / (x² + 1 + 2x? ) dx seems to have a typo in the denominator. Based on the solution, the denominator is (x? + 1/x? + 2)² or similar. Let's follow the solution's steps.
It seems the denominator is (x? (2 + 1/x? + 1/x? )² = x¹? (2 + 1/x? + 1/x? )².
f (x) = ∫ (5x? + 7x? ) / (x¹? (2 + 1/x? + 1/x? )²) dxThe solution simplifies the integrand to:
f (x) = ∫ (5/x? + 7/x? ) / (2 + 1/x? + 1/x? )² dxLet t = 2 + 1/x? + 1/x?
dt = (-5/x? - 7/x? ) dx = - (5/x? + 7/x? ) dx.The integral becomes:
f (x) = ∫ -dt / t² = 1/t + C.
f (x) = 1 / (2 + 1/x? + 1/x? ) + C.Given f (0)=0, t
...more
Similar Questions for you
Start with
(1)
(2)
(3) GTE : 4!, GTN: 4!, GTT : 4!
(4) GTWENTY = 1
⇒ 360 + 60 + 60 + 24 + 24 + 24 + 1 = 553
x + 2y + 3z = 42
0 x + 2y = 42 ->22 cases
1 x + 2y = 39 ->19 cases
2 x + 2y = 36 ->19 cases
3 x + 2y = 33 ->17 cases
4 x + 2y = 30 ->16 cases
5 x + 2y = 27 ->14 cases
6 x + 2y = 24 ->13 cases
7 x + 2y = 21 ->11 cases
8 x + 2y = 18 ->10 cases
9 x + 2y = 15 ->8 cases
10 x + 2y =12 -> 7 cases
11 x + 2y = 9 -> 5 cases
12 x + 2y = 6 -> 4 cases
13 x + 2y = 3 -> 2 cases
14 x + 2y = 0 -> 1 cases.
Total ways to partition 5 into 4 parts are:
5 0
4 1 0
3 2 0
3 1 0
2 1
51 Total way
After giving 2 apples to each child 15 apples left now 15 apples can be distributed in
15+3–1C2 = 17C2 ways
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers