If the solution curve of the differential equation passes through the points (2, 1) and (k + 1, 2), k > 0, then
If the solution curve of the differential equation passes through the points (2, 1) and (k + 1, 2), k > 0, then
Let x – 1 = X, y – 1 = Y
then DE:
Put y = vx
then
V +
c = 0
point (k + 1, 2)
Similar Questions for you
IF =
So, y(1 + cos2 x) =
y(1 + cos2 x) = – cos x + c
y(0) = 0
0 = – 1 + c
-> c = 1
Now,
(t + 1)dx = (2x + (t + 1)3)dt
I.F.
Solution is
x = (t + c) (t + 1)2
x (0) = 2 then c = 2
x = (t + 2) (t + 1)2
x (1) = 12
so
When x = 0, y = 0 gives
So, for x = 2, y = 12
= cos x – 2 cos2 x =
dy/√ (1-y²) = dx/x²
sin? ¹ (y) = -1/x + c ⇒ c = π/2
sin? ¹ (y) = -π/3 + π/2 = π/6
y = 1/2
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Differential Equations 2021
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering