If the solution curve of the differential equation dydx=x+y2xy passes through the points (2, 1) and (k + 1, 2), k > 0, then

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>l</mi> <mi>o</mi> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>l</mi> <mi>o</mi> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>l</mi> <mi>o</mi> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <mi>t</mi> <mi>a</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>l</mi> <mi>o</mi> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msup> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
2 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
P
6 months ago
Correct Option - 1
Detailed Solution:

dydx=x+y2xy

Let x – 1 = X, y – 1 = Y

then DE: dYdX=X+YXY=1+YX1YX

Put y = vx

then dYdX=V+XdVdX

V + XdVdX=1+V1V

XdVdX=1+V1VV

=1+V21V

1V1+V2dV=dXX

V1V2+1dV+dXX=0

12ln|V2+1|tan1V+ln|X|=c

lnV2+1Xtan1V=c

ln(1+(Y1X)2|X1|)tan1Y1X1=c

(2,1)ln(1+01)0=c

c = 0

ln(X1)2+(Y1)2=tan1Y1X1

point (k + 1, 2) lnk2+1=tan11k

12ln(k2+1)=tan11k

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

  d y d x ( s i n 2 x 1 + c o s 2 x ) y = s i n x 1 + c o s 2 x

IF = e s i n 2 x d x 1 + c o s 2 x  

= e l n ( 1 + c o s 2 x ) = ( 1 + c o s 2 x )        

So, y(1 + cos2 x) = s i n x ( 1 + c o s 2 x ) ( 1 + c o s 2 x ) d x  

y(1 + cos2 x) = – cos x + c

?      y(0) = 0

0 = – 1 + c

-> c = 1

y = 1 c o s x 1 + c o s 2 x   

Now, y ( π 2 ) = 1  

...Read more

(t + 1)dx = (2x + (t + 1)3)dt

d x d t 2 x t + 1 = ( t + 1 ) 2

I.F. = e 2 t + 1 d t = 1 ( t + 1 ) 2  

Solution is

x ( t + 1 ) 2 = 1 d t  

x = (t + c) (t + 1)2

? x (0) = 2 then c = 2

x = (t + 2) (t + 1)2

 x (1) = 12

...Read more

( 4 + x 2 ) d y 2 x ( x 2 + 3 y + 4 ) d x = 0

d y d x = ( 6 x x 2 + 4 ) y + 2 x

e 3 l n ( x 2 + 4 ) = 1 ( x 2 + 4 ) 3

so y ( x 2 + 4 ) 3 = 2 x ( x 2 + 4 ) 3 d x + c

y = 1 2 ( x 2 + 4 ) + c ( x 2 + 4 ) 3

When x = 0, y = 0 gives c = 1 3 2

So, for x = 2, y = 12

d y d x + 2 y t a n x = s i n x , I . F . e 2 t a n x d x = s e c 2 x  

= cos x – 2 cos2 x = 2 ( c o s x 1 4 ) 2 + 1 8 y m a x = 1 8

...Read more

dy/√ (1-y²) = dx/x²
sin? ¹ (y) = -1/x + c ⇒ c = π/2
sin? ¹ (y) = -π/3 + π/2 = π/6
y = 1/2

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Differential Equations 2021

Maths Differential Equations 2021

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering