If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then m + n is equal to
If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then m + n is equal to
-
1 Answer
-
Var (1, 2, ., n) = (Σn²/n) - (Σn/n)² = 10.
(n (n+1) (2n+1)/6n) - (n (n+1)/2n)² = 10.
(n+1) (2n+1)/6 - (n+1)/2)² = 10.
(n+1)/12 * [2 (2n+1) - 3 (n+1)] = 10.
(n+1)/12 * (4n+2 - 3n-3) = 10.
(n+1) (n-1)/12 = 10.
n² - 1 = 120 ⇒ n² = 121 ⇒ n = 11.Var (2, 4, ., 2m) = Var (2* (1, 2, ., m) = 2² * Var (1, 2, ., m) = 16.
4 * Var (1, 2, ., m) = 16.
Var (1, 2, ., m) = 4.
Using the formula from above: (m²-1)/12 = 4.
m² - 1 = 48 ⇒ m² = 49 ⇒ m = 7.
m + n = 7 + 11 = 18.
Similar Questions for you
Variance =
α2 + β2 = 897.7 × 8
= 7181.6
xi | fi | c.f. |
0 – 4 4 – 8 8 – 12 12 – 16 16 – 20 | 2 4 7 8 6 | 2 6 13 21 27 |
So, we have median lies in the class 12 – 16
I1 = 12, f = 8, h = 4, c.f. = 13
So, here we apply formula
20 M = 20 × 12.25
= 245
212 + a + b = 330
⇒ a + b = 118
= 3219
11760 + a2 + b2 = 19314
⇒ a2 + b2 = 19314 – 11760
= 7554
(a + b)2 –2ab = 7554
From here b = 41.795
a + b = 118
⇒ a + b + 2b = 118 + 83.59
= 201.59
Kindly go throuigh the solution
Given
&
(i) & (ii)
Now variance = 1 given
->(a - b) (a - b + 4) = 0
Since
Variance =
Let 2a2 – a + 1 = 5x
D = 1 – 4 (2) (1 – 5n)
= 40n – 7, which is not
As each square form is
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers