Let a > 0, b > 0. Let a and respectively be the eccentricity and length of the latus rectum of the hyperbola
Let e’ and
respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If
then the value of 77a + 44b is equal to
Let a > 0, b > 0. Let a and respectively be the eccentricity and length of the latus rectum of the hyperbola Let e’ and respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If then the value of 77a + 44b is equal to
Option 1 -
100
Option 2 -
110
Option 3 -
120
Option 4 -
130
-
1 Answer
-
Correct Option - 4
Detailed Solution:65b2 = 44b3
65 = b × 44
Similar Questions for you
f (x) is an even function
So, f (x) has at least four roots in (-2, 2)
So, g (x) has at least two roots in (-2, 2)
now number of roots of f (x)
It is same as number of roots of will have atleast 4 roots in (-2, 2)
Let
So, f(x) = x
Now,
f(x) = αx – b
option (D) satisfies
f (x) = f (6 – x) Þ f' (x) = -f' (6 – x) …. (1)
put x = 0, 2, 5
f' (0) = f' (6) = f' (2) = f' (4) = f' (5) = f' (1) = 0
and from equation (1) we get f' (3) = -f' (3)
So f' (x) = 0 has minimum 7 roots in
h (x) = f' (x) . f' (x)
h' (x) = (f' (x)2 + f' (x) f' (x)
h (x) = 0 has 13 roots in x
h' (x) = 0 has 12 roots in x
1 + x? - x? = a? (1+x)? + a? (1+x) + a? (1+x)² . + a? (1+x)?
Differentiate
4x³ - 5x? = a? + 2a? (1+x) + 3a? (1+x)².
12x² - 20x³ = 2a? + 6a? (1+x).
Put x = -1
12 + 20 = 2a? ⇒ a? = 16
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers