Let A = { n N : H . C . F . ( n , 4 5 ) = 1 } and Let B = { 2 k : k { 1 , 2 , . . . . . . , 1 0 0 } } . Then the sum of all the elements of   A B i s . . . . . . . . . .  

2 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
R
4 months ago

Sum of all elements of A B = 2   [Sum of natural number upto 100 which are neither divisible by 3 nor by 5]

= 2 [ 1 0 0 * 1 0 1 2 3 ( 3 3 * 3 4 2 ) 5 ( 2 0 * 2 1 2 ) + 1 5 ( 6 * 7 2 ) ]

= 10100 – 3366 – 2100 + 630

              = 5264

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

  A 2 = [ 1 0 0 0 2 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 2 0 0 0 1 ]

A 3 = [ 1 0 0 0 2 2 0 0 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 3 0 3 0 1 ]        

A 4 [ 1 0 0 0 2 3 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 4 0 0 0 1 ]          

Similarly we get A19 =   = [ 1 0 0 0 2 1 9 0 3 0 1 ] & A 2 0 = [ 1 0 0 0 2 2 0 0 0 0 1 ]

  [ 1 0 0 0 4 0 0 0 1 ]

1 + α + β = 1 g i v e s α + β = 0 . . . . . . . . ( i )        

  2 2 0 + ( 2 1 9 2 ) α = 4 f r o m ( i )

α = 4 2 2 0 2 1 9 2 = 4 ( 1 2 1 8 ) 2 ( 1 2 1 8 ) = 2          

So, b = 2

Hence b - a = 4

 

...Read more

Given x + 2y – 3z = a

2x + 6y – 11z = b

x – 2y + 7z = c

Here    Δ = | 1 2 3 2 6 1 1 1 2 7 | = ( 4 2 2 2 ) 2 ( 1 4 + 1 1 ) 3 ( 4 6 ) = 2 0 5 0 + 3 0 = 0

For infinite solution 

20a – 8b – 4c = 0 Þ 5a = 2b + c

...Read more

N = M 2 + M 4 + . . . . . + M 9 8

= ( α 2 I ) + ( α 2 I ) 2 + . . . . + ( α 2 I ) 4 9

= I ( α 2 + α 4 α 6 + . . . . α 9 8 )

N =  I ( α 2 α 4 + α 6 . . . . . . . + α 9 8 )

= I α 2 ( 1 ( α 2 ) 4 9 ) 1 ( α 2 )

N =  I α 2 ( 1 + α 9 8 ) 1 + α 2  

Now  ( I m 2 ) N = 2 I

( I + α 2 I ) ( I α 2 ( 1 + α 9 8 ) 1 + α 2 = 2 I  

-> a100 + a2 = 2

->a = ± 1

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen 2025

Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering