Let A1 be the area of the region bounded by the curves y = sinx, y = cosx and y-axis in the first quadrant. Also, let A2 be the area of the region bounded by the curves y = sinx, y = cosx, x-axis and x = π 2  in the first quadrant. Then,

Option 1 - <p>A<sub>1</sub> = A<sub>2</sub> and A<sub>1</sub> + A<sub>2</sub> = &lt;!-- [if gte mso 9]>&lt;xml&gt; <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1819616356"> </o:OLEObject> &lt;/xml&gt;&lt;![endif]--&gt;&nbsp;<span class="mathml" contenteditable="false"> <math> <mrow> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 2 - <p>A<sub>1</sub> : A<sub>2</sub> = 1 : &lt;!-- [if gte mso 9]>&lt;xml&gt; <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1819616363"> </o:OLEObject> &lt;/xml&gt;&lt;![endif]--&gt;&nbsp;<span class="mathml" contenteditable="false"> <math> <mrow> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span>and A<sub>1</sub> + A<sub>2</sub> = 1</p>
Option 3 - <p>A<sub>1</sub> : A<sub>2</sub> = 1 : 2 and A<sub>1</sub> + A<sub>2</sub> = 1</p>
Option 4 - <p>2A<sub>1</sub> = A<sub>2</sub> and A<sub>1</sub> + A<sub>2</sub> = 1 + &lt;!-- [if gte mso 9]>&lt;xml&gt; <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1819616378"> </o:OLEObject> &lt;/xml&gt;&lt;![endif]--&gt;&nbsp;<span class="mathml" contenteditable="false"> <math> <mrow> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
8 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
A
4 months ago
Correct Option - 3
Detailed Solution:

A 1 + A 2 = 0 π / 2 c o s x d x           

= ( S i n x ) 0 π / 2 = 1           

A 1 = 0 π / 4 ( c o s x s i n x ) d x = ( s i n x + c o s x ) 0 π / 4           

= 2 2 1 = 2 1

S o A 2 = 1 ( 2 1 ) = 2 2 = 2 ( 2 1 )

N o w A 1 A 2 = 1 2

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

| x 2 9 | = 3

x = ± 2 3 , ± 6

Required area = A

A 2 = 0 6 ( 9 x 2 3 ) d x + 0 3 ( 9 + y 9 y ) d y

A = 1 6 6 + 3 2 3 7 2 = 8 [ 2 6 + 4 3 9 ]

Note : No option in the question paper is correct.

y 2 8 x y > 2 x

2 x 2 = 8 x x ( x 4 ) = 0 x = 0 , x = 4 x = 0 , x = y

Required area = 1 4 ( 2 2 x 2 x ) dx

= 2 8 2 3 1 5 2 2 = 1 1 2 6

...Read more

  A ( a ) = 2 0 1 a ( ( 1 x 2 ) a ) d x = 4 3 ( 1 a ) 3 / 2  

  A ( 0 ) = 4 3            

and    A ( 1 2 ) = 4 3 ( 1 2 ) 3 2 A ( 0 ) A ( 1 2 ) = 2 2

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Application of Integrals 2025

Maths Application of Integrals 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering