Let α be the angle between the lines whose direction cosines satisfy the equations I + m – n = 0 and I2 + m2 – n2 = 0. Then the value of sin4α + cos4α is:
Let α be the angle between the lines whose direction cosines satisfy the equations I + m – n = 0 and I2 + m2 – n2 = 0. Then the value of sin4α + cos4α is:
l + m – n = 0
l + m = n . (i)
l2 + m2 = n2
Now from (i)
l2 + m2 = (l + m)2
=> 2lm = 0
=>lm = 0
l = 0 or m = 0
=> m = n Þ l = n
if we take direction consine of line
cos a = ![]()
Similar Questions for you
x = 0, y = 0
now at x =
Differentiating
y.
Put and
dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 12th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering