Let be a function of satisfying where is a constant and . Then at , is equal to:
Let be a function of satisfying where is a constant and . Then at , is equal to:
Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mo>-</mo> <mfrac> <mrow> <mrow> <mroot> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> <mrow></mrow> </mroot> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mo>-</mo> <mfrac> <mrow> <mrow> <mroot> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> <mrow></mrow> </mroot> </mrow> </mrow> <mrow> <mrow> <mn>2</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mn>2</mn> </mrow> </mrow> <mrow> <mrow> <mroot> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> <mrow></mrow> </mroot> </mrow> </mrow> </mfrac> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mroot> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> <mrow></mrow> </mroot> </mrow> </mrow> <mrow> <mrow> <mn>2</mn> </mrow> </mrow> </mfrac> </math> </span></p>
7 Views|Posted 5 months ago
Asked by Shiksha User
1 Answer
A
Answered by
5 months ago
Correct Option - 2
Detailed Solution:
Differentiating
y.
Put and
Similar Questions for you
l + m – n = 0
l + m = n . (i)
l2 + m2 = n2
Now from (i)
l2 + m2 = (l + m)2
=> 2lm = 0
=>lm = 0
l = 0 or m = 0
=> m = n Þ l = n
if we take direction consine of line
cos a = ![]()
x = 0, y = 0
now at x =
dy/dx = 2y/ (xlnx).
dy/y = 2dx/ (xlnx).
ln|y| = 2ln|lnx| + C.
ln|y| = ln (lnx)²) + C.
y = A (lnx)².
(ln2)² = A (ln2)². ⇒ A=1.
y = f (x) = (lnx)².
f (e) = (lne)² = 1² = 1.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers
Learn more about...

Maths Ncert Solutions class 12th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
or
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
or
See what others like you are asking & answering