Let in a series of 2n observations, half of them are equal to a and remaining half are equal to –a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a² + b² is equal to :
Let in a series of 2n observations, half of them are equal to a and remaining half are equal to –a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a² + b² is equal to :
Option 1 -
650
Option 2 -
925
Option 3 -
425
Option 4 -
250
-
1 Answer
-
Correct Option - 3
Detailed Solution:The data consists of n values of a and n values of -a.
Mean x? = (n*a + n* (-a) / 2n = 0 / 2n = 0.
Variance σ² = (Σx? ²)/N - x? ² = (n*a² + n* (-a)²) / 2n - 0² = 2na² / 2n = a².
If a value b is added to all observations, the new mean is x? ' = x? + b = 0 + b = b.
We are given the new mean is 5, so b=5.
Adding a constant does not change the variance. The new variance is still a².
We are given the new standard deviation is 20, so the new variance is 20² = 400.
Thus, a² = 400.
The required value is a² + b² = 400 + 5² = 400 + 25 = 425.
Similar Questions for you
Variance =
α2 + β2 = 897.7 × 8
= 7181.6
xi | fi | c.f. |
0 – 4 4 – 8 8 – 12 12 – 16 16 – 20 | 2 4 7 8 6 | 2 6 13 21 27 |
So, we have median lies in the class 12 – 16
I1 = 12, f = 8, h = 4, c.f. = 13
So, here we apply formula
20 M = 20 × 12.25
= 245
212 + a + b = 330
⇒ a + b = 118
= 3219
11760 + a2 + b2 = 19314
⇒ a2 + b2 = 19314 – 11760
= 7554
(a + b)2 –2ab = 7554
From here b = 41.795
a + b = 118
⇒ a + b + 2b = 118 + 83.59
= 201.59
Kindly go throuigh the solution
Given
&
(i) & (ii)
Now variance = 1 given
->(a - b) (a - b + 4) = 0
Since
Variance =
Let 2a2 – a + 1 = 5x
D = 1 – 4 (2) (1 – 5n)
= 40n – 7, which is not
As each square form is
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers