Let P be a variable point on the parabola y = 4x2 + 1. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y = x is:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mn>0</mn> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mn>0</mn> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mn>0</mn> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mn>0</mn> </mrow> </math> </span></p>
8 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
V
6 months ago
Correct Option - 3
Detailed Solution:

Let mid point of PQ is R (h, k)

h = α + 4 α 2 + α + 1 2 2 a n d

   

k = 4 α 2 + 1 + 4 α 2 + α + 1 2 2   

Eliminate a from above these two, we get

2 (3x – y)2 + (x – 3y) + 2 = 0

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

If two circles intersect at two distinct points

->|r1 – r2| < C1C2 < r1 + r2

| r – 2| <  9 + 1 6 < r + 2

|r – 2| < 5                     and r + 2 > 5

–5 < r – 2 < 5                    r > 3                      … (2)

–3 < r < 7                                                        … (1)

From (1) and (2)

3 < r < 7

...Read more

x2 – y2 cosec2q = 5 x 2 1 y 2 s i n 2 θ = 5                        

x2 cosec2q + y2 = 5  x 2 s i n 2 θ + y 2 1 = 5        

e H = 7 e e                  

and e H = 1 + s i n 2 θ 1 &n

...Read more

Slope of axis = 1 2

y 3 = 1 2 ( x 2 )              

2y – 6 = x – 2

2y – x – 4 = 0

2x + y – 6 = 0

4x + 2y – 12 = 0

            α + 1.6 = 4 α = 2.4

            β + 2.8 = 6

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Ncert Solutions class 11th 2026

Maths Ncert Solutions class 11th 2026

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering