Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of π2 at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: x2a2+y2b2=1, a2>b2. If e is the eccentricity of the ellipse E, then the value of 1e2 is equal to:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>1</mn> <mo>+</mo> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 4 - <p><sup><span class="mathml" contenteditable="false"> <math> <mrow> <mn>4</mn> <mo>+</mo> <mn>5</mn> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></sup></p>
13 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
A
6 months ago
Correct Option - 2
Detailed Solution:

 APBP

M1 M2 = 1

2tt23*2/631t2=1

t = 1

So, A (1, 2) and B (1, 2) they must be end pts of focal chord.

Length of latus rectum =2b2a

4=2b2a

b2 = 2a and ae = 1

Eccentricity of ellipse (Horizontal)

b2 = a2 (1 – e2)

2a = a2 (1 – e2)

2 = 1e (1e2)

e2 + 2e – 1 = 0

e=2±4+42

e=1+2

now 1e2=3+2

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

It's difficult but in some colleges you may can get 

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

...Read more

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven 2025

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering