Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible function f: S → S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ________.
Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible function f: S → S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ________.
-
1 Answer
-
f (1)=1.
f (4)=f (2)²=1 or 4.
f (6)=f (2)f (3).
Possible functions determined by values at primes: f (2), f (3), f (5), f (7).
f (2) can be 1 or 2. f (3) can be 1 or 3. f (5)=1,5. f (7)=1,7.
If f (m)=m, f (mn)=mn. One function. f (x)=1 is another.
What if f (2)=1, f (3)=3? f (6)=3.
Similar Questions for you
R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}
n (R1) = 66
R2 = {a is integral multiple of b}
So n (R1 – R2) = 66 – 20 = 46
as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}


⇒ (y, x) ∈ R V (x, y) ∈ R
(x, y) ∈ R ⇒ 2x = 3y and (y, x) ∈ R ⇒ 3x = 2y
Which holds only for (0, 0)
Which does not belongs to R.
∴ Value of n = 0
f is increasing function
x < 5x < 7x

f (x) < f (5x) < f (7x)
->
Given f (k) =
Case I : If x is even then g (x) = x . (i)
Case II : If x is odd then g (x + 1) = x + 1 . (ii)
From (i) & (ii), g (x) = x, when x is even
So total no. of functions = 105 × 1 = 105
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers