Let the plane passing through the point (-1, 0, -2) and perpendicular to each of the planes 2x + y - z = 2 and x - y - z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to:
Let the plane passing through the point (-1, 0, -2) and perpendicular to each of the planes 2x + y - z = 2 and x - y - z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to:
Option 1 -
4
Option 2 -
8
Option 3 -
5
Option 4 -
3
-
1 Answer
-
Correct Option - 1
Detailed Solution:Normal to the required plane is perpendicular to the normals of the given planes.
n = n? × n? = (2i + j - k) × (i - j - k) = -2i + j - 3k.
Equation of the plane is -2 (x+1) + 1 (y-0) - 3 (z+2) = 0
-2x - 2 + y - 3z - 6 = 0
-2x + y - 3z - 8 = 0
2x - y + 3z + 8 = 0
Comparing with ax + by + cz + 8 = 0, we get a=2, b=-1, c=3.
a+b+c = 2-1+3 = 4.
Similar Questions for you
....(1)
Let
Let
Put l1 and l2 in (1)
α = 3
Given , ,
Dot product with on both sides
... (1)
Dot product with on both sides
... (2)
(a – 1) × 2 + (b – 2) × 5 + (g – 3) × 1 = 0
2a + 5b + g – 15 = 0
Also, P lie on line
a + 1 = 2λ
b – 2 = 5λ
g – 4 = λ
2 (2λ – 1) + 5 (5λ + 2) + λ + 4 – 15 = 0
4λ + 25λ + λ – 2 + 10 + 4 – 15 = 0
30λ – 3 = 0
a + b + g = (2λ – 1) + (5λ + 2) + (λ + 4)

Take
x = 2λ + 1, y = 3λ + 2, z = 4λ + 3
= (α − 2)
Now,
(α − 2) ⋅ 2 + (β − 3) ⋅3 + (γ − 4) ⋅ 4 = 0
2α − 4 + 3β − 9 + 4γ −16 = 0
⇒ 2α + 3β + 4γ = 29
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers