Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
Let y = y(x) be the solution curve of the differential equation which passes through the point (0, 1). Then y(1) is equal to
Let y = y(x) be the solution curve of the differential equation which passes through the point (0, 1). Then y(1) is equal to
Option 1 -
Option 2 -
Option 3 -
Option 4 -
-
1 Answer
-
Correct Option - 2
Detailed Solution:IF =
x = -1
⇒ 4 = 2A ⇒ A = 2
x = -2
⇒ -1 = -B Þ B = 1
x2 – 3 ⇒ -2 = 2c
c = -1
=
=
x = 1
y =
<p> <math><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>+</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>2</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>1</mn><mn>3</mn></mrow><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>6</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>6</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mi>x</mi><mo>></mo><mo>−</mo><mn>1</mn></mrow></math></p><p>IF = <math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mi>p</mi><mi>d</mi><mi>x</mi></mrow></mrow></mstyle></mrow></msup><mo>=</mo><mfrac><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac></mrow></math></p><p><math><mrow><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mi>P</mi><mi>d</mi><mi>x</mi><mo>=</mo><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mfrac><mrow><mn>2</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>1</mn><mn>3</mn></mrow><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>6</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>6</mn></mrow></mfrac><mi>d</mi><mi>n</mi><mo>=</mo><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi></mrow></mrow></mstyle></mrow></mrow></mstyle></mrow></mrow></mstyle></mrow></math></p><p><math><mrow><mo>=</mo><mi mathvariant="script">l</mi><mi>n</mi><mrow><mo>(</mo><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></p><p><math><mrow><mfrac><mrow><mn>2</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>1</mn><mn>3</mn></mrow><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>B</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>C</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac></mrow></math></p><p><math><mrow><mn>2</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mn>1</mn><mi>x</mi><mo>+</mo><mn>1</mn><mn>3</mn><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>+</mo><mi>C</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow></math></p><p>x = -1</p><p>⇒ 4 = 2A ⇒ A = 2</p><p>x = -2</p><p>⇒ -1 = -B Þ B = 1</p><p>x<sub>2</sub> – 3 ⇒ -2 = 2c</p><p>c = -1</p><p><math><mrow><mi>y</mi><mo>⋅</mo><mfrac><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>=</mo><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mi>d</mi><mi>x</mi></mrow></mrow></mstyle></mrow></math></p><p>= <math><mrow><mstyle displaystyle="true"><mrow><mo>∫</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi></mrow></mrow></mstyle></mrow></math></p><p>= <math><mrow><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>c</mi></mrow></math></p><p><math><mrow><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>⇒</mo><mn>1</mn><mo>⋅</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>=</mo><mi>c</mi></mrow></math></p><p>x = 1 <math><mrow><mi>y</mi><mo>⋅</mo><mrow><mo>(</mo><mrow><mn>3</mn></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mo>=</mo><mfrac><mrow><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></p><p>y = <math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></p>
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts