Sets Ex 1.4 Class 11 Math Solutions
Q22. Find the union of each of the following pairs of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = [ a, e, i, o, u} B = {a, b, c}
(iii) A = {x : x is a natural number and multiple of 3}
B = {x : x is a natural number less than 6}
(iv) A = {x : x is a natural number and 1 < x 6 }
B = {x : x is a natural number and 6 < x <10 }
(v) A = {1, 2, 3}, B =
Sets Ex 1.4 Class 11 Math Solutions
Q22. Find the union of each of the following pairs of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = [ a, e, i, o, u} B = {a, b, c}
(iii) A = {x : x is a natural number and multiple of 3}
B = {x : x is a natural number less than 6}
(iv) A = {x : x is a natural number and 1 < x 6 }
B = {x : x is a natural number and 6 < x <10 }
(v) A = {1, 2, 3}, B =
-
1 Answer
-
22. (i) X∪ Y = {1,3,5}∪ {1,2,3} = {1,2,3,5}.
(ii) A ∪B = {a, e, i, o, u} ∪ {a, b, c} = {a, b, c, e, i, o, u}
(iii) A = {3, 6, 9, 12 …}
B = {1, 2, 3, 4, 5}
So, A∪ B = {3, 6, 9, 12, …}∪ {1, 2, 3, 4, 5}
= {1, 2, 3, 4, 5, 6, 9, 12 …}
(iv) A = {2, 3, 4, 5, 6}
B = {7, 8, 9}
So, A∪ B = {2, 3, 4, 5, 6}∪ {7, 8, 9} = {2, 3, 4, 5, 6, 7, 8, 9}
(v) A ∪B = {1, 2, 3} ∪ = {1, 2, 3}.
Similar Questions for you
(|x| - 3)|x + 4| = 6

(-x - 3) (- (x + 4) = 6
(x + 3) (x + 4) = 6 ⇒ x² + 7x + 12 = 6 ⇒ x² + 7x + 6 = 0
(x + 1) (x + 6) = 0 ⇒ x = -6 (since x < -4)
Case (ii) -4 ≤ x < 0
(-x - 3) (x + 4) = 6
⇒ -x² - 7x - 12 = 6
⇒ x² + 7x + 18 = 0
The discriminant is D = 7² - 4 (1) (18) = 49 - 72 < 0, so no real solution.
Case (iii) x ≥ 0
(x - 3) (x + 4) = 6
⇒ x² + x - 12 = 6
⇒ x² + x - 18 = 0
x = [-1 ± √ (1² - 4 (1) (-18)] / 2 = [-1 ± √73] / 2
Since x ≥ 0 ⇒ x = (√73 - 1) / 2
Only two solutions.
Given n = 2x. 3y. 5z . (i)
On solving we get y = 3, z = 2
So, n = 2x. 33. 52
So that no. of odd divisor = (3 + 1) (2 + 1) = 12
Hence no. of divisors including 1 = 12
Let A = {a, b, c}, B = {1, 2, 3, 4, 5} n (A × B) = 15
x = number of one-one functions from A to B.
y = number of one-one functions for A to (A × B)
2cos
RHS 2
66. Given series is 1× 2× 3 + 2× 3 ×4 + 3× 4 ×5 + … to n term
an = (nth term of A. P. 1, 2, 3, …) ´× (nth terms of A. P. 2, 3, 4) ×
i e, a = 1, d = 2- 1 = 1i e, a = 2, d = 3- 2 = 1
(nth term of A. P. 3, 4, 5)
i e, a = 3, d = 3 -4 = 1.
= [1 + (n -1) 1] ×[2 + (n -1):1]× [3 + (n- 1) 1]
= (1 + n -1)×(2 + n -1)×(3 + n -1)
= n (n + 1)(n + 2)
= n(n2 + 2n + n + 2)
=n3 + 2n2 + 2n.
Sn = ∑n3 + 3 ∑n2 + 2 ∑n
=
=
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers