Suppose the vectors x1,x2 and x3 are the solutions of the system of linear equations, Ax =b when the vector b on the right side is equal to b1,b2 and b3 respectively. If x1=111,x2=021,x3=001,b1=100,b2=020 and b3=002 , then the determinant of A is equal of A is equal to :

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mn>1</mn> </mrow> </mrow> <mrow> <mrow> <mn>2</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 2 - <p>4</p>
Option 3 - <p>2</p>
Option 4 - <p><strong>&nbsp;<math><mfrac><mrow><mrow><mn>3</mn></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></mfrac></math></strong>&nbsp;(Determinants)</p>
3 Views|Posted 7 months ago
Asked by Shiksha User
1 Answer
A
7 months ago
Correct Option - 3
Detailed Solution:

Let TV (r) denotes truth value of a statement r .

 Now, if TV (p)=TV (q)=T

TVS1=F

Also, if TV (p)=T and TV (q)=F

TVS2=T

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

|2A| = 27

8|A| = 27

Now |A| = α2–β2 = 24

α2 = 16 + β2

α2– β2 = 16

(α–β) (α+β) = 16

->α + β = 8 and

α – β = 2

->α = 5 and β = 3

...Read more

|A| = 2

a d j ( a d j ( a d j . . . . ( a ) ) ) ? 2 0 2 4 t i m e s = | A | ( n 1 ) 2 0 2 4            

= | A | ( n 1 ) 2 0 2 4                                             

= 2 2 2 0 2 4                       &nb

...Read more

0 2 2 x d x 0 2 2 x x 2 d x = 0 1 d y 0 1 1 y 2 d y 0 2 y 2 2 d y + 1 2 2 d y + I

8 3 0 1 1 t 2 d t = 1 8 6 + 2 + I

I = 1 0 1 1 t 2 d t

0 2 2 x d x 0 2 2 x x 2 d x = 0 1 d y 0 1 1 y 2 d y 0 2 y 2 2 d y + 1 2 2 d y + I

8 3 0 1 1 t 2 d t = 1 8 6 + 2 + I

I = 1 0 1 1 t 2 d t

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 12th Chapter Four 2025

Maths NCERT Exemplar Solutions Class 12th Chapter Four 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering