Suppose the vectors and are the solutions of the system of linear equations, when the vector on the right side is equal to and respectively. If and , then the determinant of is equal of is equal to :
Suppose the vectors and are the solutions of the system of linear equations, when the vector on the right side is equal to and respectively. If and , then the determinant of is equal of is equal to :
Let TV (r) denotes truth value of a statement .
Also, if and
Similar Questions for you
|2A| = 27
8|A| = 27
Now |A| = α2–β2 = 24
α2 = 16 + β2
α2– β2 = 16
(α–β) (α+β) = 16
->α + β = 8 and
α – β = 2
->α = 5 and β = 3
|A| = 3
|B| = 1
->|C| = |ABAT| = |A|B|A7| = |A|2|B|
= 9
->|X| = |A|C|2|AT|
= 3 * 92 * 3 = 9 * 92 = 729
|A| = 2
&nb
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths NCERT Exemplar Solutions Class 12th Chapter Four 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering