The diameter of the circle, whose centre lies on the lines x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is
The diameter of the circle, whose centre lies on the lines x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is
∴ center lies on x + y = 2 and in 1st quadrant center = (a, 2-a) where a > 0 and 2-a > 0 ⇒ 0 < a < 2
∴ circle touches x = 3 and y = 2
⇒ |3-a| = |2 - (2-a)| = radius
⇒ |3-a| = |a| ⇒ a = 3/2
∴ radius = a
⇒ Diameter = 2a = 3.
Similar Questions for you
ae = 2b
Or 4 (1 – e2) = e2
4 = 5e2 ->
If two circles intersect at two distinct points
->|r1 – r2| < C1C2 < r1 + r2
| r – 2| < < r + 2
|r – 2| < 5 and r + 2 > 5
–5 < r – 2 < 5 r > 3 … (2)
–3 < r < 7 … (1)
From (1) and (2)
3 < r < 7
x2 – y2 cosec2q = 5
x2 cosec2q + y2 = 5
and &n

Slope of axis =
⇒ 2y – 6 = x – 2
⇒ 2y – x – 4 = 0
2x + y – 6 = 0
4x + 2y – 12 = 0
α + 1.6 = 4 ⇒ α = 2.4
β + 2.8 = 6 ⇒
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths NCERT Exemplar Solutions Class 11th Chapter One 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering