The graph of function f(x) = x5/20 - x4/12 + 5 has :
The graph of function f(x) = x5/20 - x4/12 + 5 has :
Option 1 -
No local extremum, one point of inflection.
Option 2 -
Two local maximum, one local minimum, two point of inflection
Option 3 -
One local maximum, one local minimum, one point of inflection.
Option 4 -
One local maximum, one local minimum, two point of inflection.
-
1 Answer
-
Correct Option - 3
Detailed Solution:f (x) = x? /20 - x? /12 + 5
f' (x) = x? /4 - x³/3 = x³ (x/4 - 1/3)
Local maxima at 0, Local minima at 4/3
f' (x) = x³ - x² = x² (x-1)
x = 1 point of inflection
Similar Questions for you
y (x) = 2x – x2
y? (x) = 2x log 2 – 2x
M = 3
N = 2
M + N = 5
y = x3
Equation of tangent y – t3 = 3t2 (x – t)
Let again meet the curve at
=> t1 = -2t
Required ordinate =
Given f(X) =
So
put
(i) + (iii), f(x) +
Hence f(e) +
f' (x) = cosx + sinx − k ≤ 0∀x ∈ R
k ≥ √2
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers