The least value of |z| where z is complex number which satisfies the inequality exp( ((|z|+3)(|z|-1))/(|z|+1) logₑ2 ) ≥ log_√2 |5√7 + 9i|, i = √-1, is equal to :
The least value of |z| where z is complex number which satisfies the inequality exp( ((|z|+3)(|z|-1))/(|z|+1) logₑ2 ) ≥ log_√2 |5√7 + 9i|, i = √-1, is equal to :
The inequality is experience ( (|z|+3) (|z|-1) / (|z|+1) * log?2 ) ≥ log√? 16.
The right side is log? (1/2) 16 = log? (2? ¹) 2? = (4/-1)log?2 = -4. This seems incorrect.
Let's assume the base of the log on the right is √2. log√? 16 = log? (1/2) 2? = 2 * log?2? = 8.
The inequality becomes: 2^ (|z|+3)
Similar Questions for you
...(1)
–2α + β = 0 …(2)
Solving (1) and (2)
a =
|z| = 0 (not acceptable)
|z| = 1
|z|2 = 1
Given : x2 – 70x + l = 0
->Let roots be a and b
->b = 70 – a
->= a (70 – a)
l is not divisible by 2 and 3
->a = 5, b = 65
->
z1 + z2 = 5
⇒ 20 + 15i = 125 – 15z1z2
⇒ 3z1z2 = 25 – 4 – 3i
3z1z2 = 21– 3i
z1⋅z2 = 7 – i
(z1 + z2)2 = 25
= 11 + 2i
&nb
a = 1 > 0 and D < 0
4 (3k – 1)2 – 4 (8k2 – 7) < 0
K = 3
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering