Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
The sum of all the elements in the set
is equal to………
The sum of all the elements in the set is equal to………
-
1 Answer
-
2040 = 23 × 3 × 5 × 17
If HCF between {n & 2040} = 1
n can not be multiple of 2, 3, 5, 17.
Let S(n) denote sum of numbers divisible by n.
S(34) = 34 + 68 = 102
S (51) = 51
S (85) = 85, S (30) = 30 + 60 + 90 = 180 S (all other combinations) = 0
Sum of all numbers which are either divisible by 2, 3, 5, or 17 is
...more2040 = 23 × 3 × 5 × 17
If HCF between {n & 2040} = 1
n can not be multiple of 2, 3, 5, 17.
Let S(n) denote sum of numbers divisible by n.
S(34) = 34 + 68 = 102
S (51) = 51
S (85) = 85, S (30) = 30 + 60 + 90 = 180 S (all other combinations) = 0
Sum of all numbers which are either divisible by 2, 3, 5, or 17 is
-[16 × 51 + 50 × 11 + 102 + 45 × 7 × 51 + 85] + 180 = 3799
Again sum of all number of
Sum of required number = 5050 – 3799 = 1251
less<p>2040 = 2<sup>3</sup> × 3 × 5 × 17</p><p>If HCF between {n & 2040} = 1</p><p><span contenteditable="false"> <math> <mrow> <mo>∴</mo> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1816422225"> </o:OLEObject></xml><![endif]--> n can not be multiple of 2, 3, 5, 17.</p><p>Let S(n) denote sum of numbers divisible by n.</p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>+</mo> <mn>1</mn> <mn>0</mn> <mn>0</mn> <mo>=</mo> <mn>2</mn> <mo>×</mo> <mfrac> <mrow> <mn>5</mn> <mn>0</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>5</mn> <mn>0</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1026" DrawAspect="Content" ObjectID="_1816422226"> </o:OLEObject></xml><![endif]--></p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>+</mo> <mn>9</mn> <mn>9</mn> <mo>=</mo> <mn>3</mn> <mo>×</mo> <mfrac> <mrow> <mn>3</mn> <mn>3</mn> <mo>×</mo> <mn>3</mn> <mn>4</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>3</mn> <mn>3</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1027" DrawAspect="Content" ObjectID="_1816422227"> </o:OLEObject></xml><![endif]--></p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>5</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>5</mn> <mo>+</mo> <mn>1</mn> <mn>0</mn> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>+</mo> <mn>1</mn> <mn>0</mn> <mn>0</mn> <mo>=</mo> <mn>5</mn> <mo>×</mo> <mfrac> <mrow> <mn>2</mn> <mn>0</mn> <mo>×</mo> <mn>2</mn> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>5</mn> <mn>0</mn> <mo>×</mo> <mn>2</mn> <mn>1</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1028" DrawAspect="Content" ObjectID="_1816422228"> </o:OLEObject></xml><![endif]--></p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mn>7</mn> <mo>+</mo> <mn>3</mn> <mn>4</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>+</mo> <mn>8</mn> <mn>5</mn> <mo>=</mo> <mn>1</mn> <mn>7</mn> <mo>×</mo> <mfrac> <mrow> <mn>5</mn> <mo>×</mo> <mn>6</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>5</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1029" DrawAspect="Content" ObjectID="_1816422229"> </o:OLEObject></xml><![endif]--> </p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mo>+</mo> <mn>1</mn> <mn>2</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>=</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mo>×</mo> <mn>1</mn> <mn>7</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> <mn>6</mn> <mo>×</mo> <mn>1</mn> <mn>5</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1030" DrawAspect="Content" ObjectID="_1816422230"> </o:OLEObject></xml><![endif]--></p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mn>0</mn> <mo>+</mo> <mn>2</mn> <mn>0</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>=</mo> <mn>1</mn> <mn>0</mn> <mo>×</mo> <mfrac> <mrow> <mn>1</mn> <mn>0</mn> <mo>×</mo> <mn>1</mn> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>5</mn> <mn>0</mn> <mo>×</mo> <mn>1</mn> <mn>1</mn> </mrow> </math> </span></p><p><!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1816422237"> </o:OLEObject></xml><![endif]--></p><p>S(34) = 34 + 68 = 102</p><p><span contenteditable="false"> <math> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mn>5</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mn>5</mn> <mo>+</mo> <mn>3</mn> <mn>0</mn> <mo>+</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>+</mo> <mn>9</mn> <mn>0</mn> <mo>=</mo> <mn>1</mn> <mn>5</mn> <mo>×</mo> <mfrac> <mrow> <mn>6</mn> <mo>×</mo> <mn>7</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>4</mn> <mn>5</mn> <mo>×</mo> <mn>7</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1026" DrawAspect="Content" ObjectID="_1816422238"> </o:OLEObject></xml><![endif]--></p><p>S (51) = 51</p><p>S (85) = 85, S (30) = 30 + 60 + 90 = 180 S (all other combinations) = 0</p><p><span contenteditable="false"> <math> <mrow> <mo>∴</mo> </mrow> </math> </span><!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1027" DrawAspect="Content" ObjectID="_1816422239"> </o:OLEObject></xml><![endif]-->Sum of all numbers which are either divisible by 2, 3, 5, or 17 is</p><p><span contenteditable="false"> <math> <mrow> <mo>=</mo> <mn>1</mn> <mn>5</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mn>3</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mn>0</mn> <mo>×</mo> <mn>2</mn> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>×</mo> <mn>5</mn> <mn>1</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1028" DrawAspect="Content" ObjectID="_1816422240"> </o:OLEObject></xml><![endif]--></p><p>-[16 × 51 + 50 × 11 + 102 + 45 × 7 × 51 + 85] + 180 = 3799</p><p>Again sum of all number of<span contenteditable="false"> <math> <mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mo>−</mo> <mn>1</mn> <mn>0</mn> <mn>0</mn> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mn>0</mn> <mn>0</mn> <mo>×</mo> <mn>1</mn> <mn>0</mn> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>5</mn> <mn>0</mn> <mn>5</mn> <mn>0</mn> </mrow> </math> </span> <!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1029" DrawAspect="Content" ObjectID="_1816422241"> </o:OLEObject></xml><![endif]--></p><p><!-- [if gte mso 9]><xml> <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1030" DrawAspect="Content" ObjectID="_1816422242"> </o:OLEObject></xml><![endif]--><span contenteditable="false"> <math> <mrow> <mo>∴</mo> </mrow> </math> </span> Sum of required number = 5050 – 3799 = 1251</p><p> </p>
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts