The sum of all values of x in [0, 2π], for which sinx + sin2x + sin3x + sin4x = 0, is equal to:
The sum of all values of x in [0, 2π], for which sinx + sin2x + sin3x + sin4x = 0, is equal to:
Option 1 -
11π
Option 2 -
9π
Option 3 -
8π
Option 4 -
12π
-
1 Answer
-
Correct Option - 2
Detailed Solution:sinx+sin4x + sin2x+sin3x = 0
2sin (5x/2)cos (3x/2) + 2sin (5x/2)cos (x/2) = 0
2sin (5x/2) [cos (3x/2)+cos (x/2)] = 0
4sin (5x/2)cosxcos (x/2)=0.
sin (5x/2)=0 ⇒ 5x/2=kπ ⇒ x=2kπ/5. x=0, 2π/5, 4π/5, 6π/5, 8π/5, 2π.
cosx=0 ⇒ x=π/2, 3π/2.
cos (x/2)=0 ⇒ x=π.
Sum = 9π.
Similar Questions for you
16cos2θ + 25sin2θ + 40sinθ cosθ = 1
16 + 9sin2θ + 20sin 2θ = 1
+ 20sin 2θ = 1
– 9cos 2θ + 40sin 2θ = – 39
48tan2θ + 80tanθ + 30 = 0
24tan2θ + 40tanθ + 15 = 0
-> ,
So will be rejected as
Option (4) is correct.
12x =
is the solution of above equation.
Statement 1 is true
f(0) = – 1 < 0
one root lies in , one root is which is positive. As the coefficients are real, therefore all the roots must be real.
Statement 2 is false.
tan2 A = tan B tan C
It is only possible when A = B = C at x = 1
A = 30°, B = 30°, C = 30°
a = sin−1 (sin5) = 5 − 2π
and b = cos−1 (cos5) = 2π − 5
∴ a2 + b2 = (5 − 2π)2 + (2π − 5)2
= 8π2 − 40π + 50
sin 2 + tan 2 > 0
Let tan = x
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers