The value of lim(n→∞) [ Σ(k=1 to n) (2k-1) + 8n ] / [ Σ(k=1 to n) (2k-1) + 4n ] is equal to:
The value of lim(n→∞) [ Σ(k=1 to n) (2k-1) + 8n ] / [ Σ(k=1 to n) (2k-1) + 4n ] is equal to:
lim (n→∞) [n² + 8n] / [n² + 4n] = 1.
The question is likely a Riemann sum.
lim (n→∞) (1/n) Σ [ (2k/n - 1/n) / (2k/n - 1/n + 4) ]
This is too complex. Let's follow the image solution.
lim (n→∞) (1/n) Σ [ 2 (k/n) + 8 ] / [ 2 (k/n) + 4 ]
∫? ¹ (2x+8)/ (2x+4) dx = ∫? ¹ (1 + 4/ (2x+4) dx = [x + 2ln|2x+4|]? ¹
=
Similar Questions for you
It's difficult but in some colleges you may can get
is collinear with
⇒ = …(1)
is collinear with
⇒ …(2)
From (1) and (2)
->
and
, put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt
->
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering
