The value of the definite integral ∫₋π/₄π/₄ dx / ((1+e^(xcosx))(sin⁴x + cos⁴x)) is equal to:
The value of the definite integral ∫₋π/₄π/₄ dx / ((1+e^(xcosx))(sin⁴x + cos⁴x)) is equal to:
Option 1 -
π/4
Option 2 -
π/(2√2)
Option 3 -
π/2
Option 4 -
π/√2
-
1 Answer
-
Correct Option - 2
Detailed Solution:I = ∫? π/? π/? dx/ (1+e^ (xcosx) (sin? x+cos? x). Using ∫? f (x)dx = ∫? f (a+b-x)dx. a+b=0.
I = ∫? π/? π/? dx/ (1+e? ) (sin? x+cos? x) = ∫? π/? π/? e? dx/ (e? +1) (sin? x+cos? x).
2I = ∫? π/? π/? dx/ (sin? x+cos? x) = 2∫? π/? dx/ (sin? x+cos? x).
I = ∫? π/? sec? xdx/ (tan? x+1). Let t=tanx.
I = ∫? ¹ (t²+1)dt/ (t? +1) = ∫? ¹ (1+1/t²)dt/ (t²-√2t+1) (t²+√2t+1). No, this is hard.
I = ∫? ¹ (1+1/t²)dt/ (t-1/t)²+2). Let u=t-1/t. I = ∫ du/ (u²+2) = (1/√2)tan? ¹ (u/√2).
= π/ (2√2).
Similar Questions for you
Let 2x = t then
Let tan t = y then
Let
The integral is I = ∫ [ (x²-1) + tan? ¹ (x + 1/x)] / [ (x? +3x²+1)tan? ¹ (x+1/x)] dx
This is a complex integral. The provided solution splits it into two parts:
I? = ∫ (x²-1) / [ (x? +3x²+1)tan? ¹ (x+1/x)] dx
I? = ∫ 1 / (x? +3x²+1) dx
The solution proceeds with substitutions which are hard to follow due to OCR quality, but it seems to compare the final result with a given form to find coefficients α, β, γ, δ. The final expression shown is:
10 (α + βγ + δ) = 10 (1 + (1/2√5)*√5 + 1/2) seems incorrect.
The calculation is shown as 10 (1
The problem is to evaluate the integral:
I = ∫? ¹? [x] * e^ [x] / e^ (x-1) dx, where [x] denotes the greatest integer function.
The solution breaks the integral into a sum of integrals over unit intervals:
I = ∑? ∫? ¹ n * e? / e^ (x-1) dx
= ∑? n * e? ∫? ¹ e^ (1-x) dx
= ∑? n * e? [-e^ (1-x)] from n to n+1
= ∑? n * e? [-e? - (-e¹? )]
= ∑? n * e? (e¹? - e? )
= ∑? n * e? * e? (e - 1)
= (e - 1) ∑? n
= (e - 1) * (0 + 1 + 2 + . + 9)
= (e - 1) * (9 * 10 / 2)
= 45 (e - 1)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers