What are the important topics in Three Dimensional Geometry Class 12 for board exams?

0 5 Views | Posted 5 months ago
Asked by Chandra Pruthi

  • 1 Answer

  • N

    Answered by

    nitesh singh | Contributor-Level 10

    5 months ago

    3D Geometry holds good weightage in the class 12 board exams, So students must be aware of the important topics that can be asked in the exams. Class 12  Three Dimensional Geometry chapter covers many important topics like direction cosines and ratios, equations of a line, angles between two lines, skew lines, the shortest distance, and equations of planes. Students can use our NCERT Solutions for Class 12 3D Geometry for clear understanding of these topics.

Similar Questions for you

A
alok kumar singh

π 2 π 2 ( x 2 c o s x 1 + π 2 + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) d x = π 4 ( π + α ) 2

0 π 2 { ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) + ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) } d x

= π 4 ( π + α ) 2

0 π 2 ( x 2 c o s x + 1 + s i n 2 x ) d x = π 4 ( π + α ) 2

0 π 2 x 2 c o s x d x + 0 π 2 ( 1 + s i n 2 x ) d x = π 4 ( π + α ) 2 ....(1)

Let I 1 = 0 π 2 ( 1 + s i n 2 x ) d x

I 1 = 0 π 2 1 d x + 0 π 2 ( 1 c o s 2 x 2 ) d x

I 1 = π 2 + 1 2 [ π 2 + 0 ]

I 1 = 3 π 4

Let I 2 = 0 π 2 x 2 c o s x d x

I 2 = [ x 2 ( s i n x ) 2 x c o s x d x ] 0 π 2

I 2 = [ x 2 ( s i n x ) 2 x s i n x ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x ( c o s x ) + c o s x ) ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x c o s x + s i n x ) ] 0 π 2

I 2 = ( π 2 4 2 )

Put l1 and l2 in (1)

π 2 4 2 + 3 π 4

π 2 4 + 3 π 4 2

π 4 ( π + 3 ) 2

α = 3

A
alok kumar singh

Given | a | = 1 , | b | = 4 , a b = 2

c = 2 ( a × b ) 3 b  

Dot product with  a on both sides

c a = 6 ... (1)

Dot product with  b  on both sides

b c = 4 8 ... (2)

c c = 4 | a × b | 2 + 9 | b | 2

| c | 2 = 4 [ | a | 2 | b | 2 ( a b ) 2 ] + 9 | b | 2

| c | 2 = 4 [ ( 1 ) ( 4 ) 2 ( 4 ) ] + 9 ( 1 6 )

| c | 2 = 4 [ 1 2 ] + 1 4 4

| c | 2 = 4 8 + 1 4 4

| c | 2 = 1 9 2

c o s θ = b c | b | | c |

c o s θ = 4 8 1 9 2 4

c o s θ = 4 8 8 3 4

c o s θ = 3 2 3

c o s θ = 3 2 θ = c o s 1 ( 3 2 )

 

A
alok kumar singh

(a – 1) × 2 + (b – 2) × 5 + (g – 3) × 1 = 0

2a + 5b + g – 15 = 0

Also, P lie on line

a + 1 = 2λ

b – 2 = 5λ

g – 4 = λ

2 (2λ – 1) + 5 (5λ + 2) + λ + 4 – 15 = 0

4λ + 25λ + λ – 2 + 10 + 4 – 15 = 0

30λ – 3 = 0

λ = 1 1 0  

a + b + g = (2λ – 1) + (5λ + 2) + (λ + 4)

= 8 λ + 5 = 8 1 0 + 5 = 5 . 8

A
alok kumar singh

Take x 1 2 = y 2 3 = z 3 4 = λ  

x = 2λ + 1, y = 3λ + 2, z = 4λ + 3

  A B  = (α − 2)  i ^ + (β − 3) j ^ + (γ − 4) k ^  

Now,

(α − 2)  2 + (β − 3) 3 + (γ − 4) 4 = 0

2α − 4 + 3β − 9 + 4γ −16 = 0

2α + 3β + 4γ = 29

V
Vishal Baghel

L 1 = x λ 1 = y 1 2 1 2 = z 1 2

S D = | 2 λ + 3 ( 2 λ + 1 2 ) + λ | 1 4 = | 5 λ + 3 2 | 1 4

5 λ + 3 2 = 7 2 5 λ = 5 λ = 1

| λ | = 1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post