14.13 Figure 14.26 (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring. Figure 14.26 (b) shows the same spring with both ends free and attached to a mass m at either end. Each end of the spring in Fig. 14.26(b) is stretched by the same force F.
(a) What is the maximum extension of the spring in the two cases ?
(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the period of oscillation in each case ?
(a) For figure (a) : When a force F is applied to the free end of the spring, an extension l is produced. For the maximum extension, it can be written as:
F – kl, where k is the spring constant.
For maximum =extension of the spring, l =
For figure (b): The displacement (x) produced in this case is x =
Net force F = +2kx = 2k . So l =
(b) For figure (a) : For mass (m) of the block, force is written as : F = ma = m ,
where x is the displacement of the block in time t, then
m , it is negative because the direction of the elastic force is opposite to the direction of displacement.
&nbs
...more
(a) For figure (a) : When a force F is applied to the free end of the spring, an extension l is produced. For the maximum extension, it can be written as:
F – kl, where k is the spring constant.
For maximum =extension of the spring, l =
For figure (b): The displacement (x) produced in this case is x =
Net force F = +2kx = 2k . So l =
(b) For figure (a) : For mass (m) of the block, force is written as : F = ma = m ,
where x is the displacement of the block in time t, then
m , it is negative because the direction of the elastic force is opposite to the direction of displacement.
= xwhere, = ,
Time period of the oscillation, T = = = 2
For figure (b) :
F = m = -2kx. It is negative because the direction of elastic force is opposite to the direction of displacement.
= - x, where angular frequency =
Time period, T =
less
<p><strong>(a)</strong> For figure (a) : When a force F is applied to the free end of the spring, an extension l is produced. For the maximum extension, it can be written as:</p><p>F – kl, where k is the spring constant.</p><p>For maximum =extension of the spring, l = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mi>k</mi></mrow></mrow></mfrac></math></span></p><p>For figure (b): The displacement (x) produced in this case is x = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></mfrac></math></span></p><p>Net force F = +2kx = 2k <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></mfrac></math></span> . So l = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mi>k</mi></mrow></mrow></mfrac></math></span></p><p> </p><p><strong>(b)</strong> For figure (a) : For mass (m) of the block, force is written as : F = ma = m <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msup><mrow><mrow><mi>d</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>x</mi></mrow></mrow><mrow><mrow><mi>d</mi><msup><mrow><mrow><mi>t</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></mrow></mrow></mfrac></math></span> ,</p><p>where x is the displacement of the block in time t, then</p><p>m <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msup><mrow><mrow><mi>d</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>x</mi></mrow></mrow><mrow><mrow><mi>d</mi><msup><mrow><mrow><mi>t</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></mrow></mrow></mfrac><mo>=</mo><mi></mi><mo>-</mo><mi>k</mi><mi>x</mi></math></span> , it is negative because the direction of the elastic force is opposite to the direction of displacement.</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><msup><mrow><mrow><mi>d</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>x</mi></mrow></mrow><mrow><mrow><mi>d</mi><msup><mrow><mrow><mi>t</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></mrow></mrow></mfrac><mo>=</mo><mi></mi><mo>-</mo><mo>(</mo><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac><mo>)</mo><mi>x</mi></math></span> = <span title="Click to copy mathml"><math><msup><mrow><mrow><mo>-</mo><mi>ω</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span> xwhere, <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>ω</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></math></span> , <span title="Click to copy mathml"><math><mi>ω</mi><mi></mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal"></mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal"></mi><mi mathvariant="normal">f</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">q</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">y</mi><mi mathvariant="normal"></mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">f</mi><mi mathvariant="normal"></mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">h</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal"></mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mo>.</mo></math></span></p><p>Time period of the oscillation, T = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>2</mn><mi>π</mi></mrow></mrow><mrow><mrow><mi>ω</mi></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>2</mn><mi>π</mi></mrow></mrow><mrow><mrow><mo>√</mo><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mfrac></math></span> = 2 <span title="Click to copy mathml"><math><mi>π</mi><msqrt><mrow><mfrac><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mi>k</mi></mrow></mrow></mfrac></mrow></msqrt></math></span></p><p>For figure (b) :</p><p>F = m <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msup><mrow><mrow><mi>d</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>x</mi></mrow></mrow><mrow><mrow><mi>d</mi><msup><mrow><mrow><mi>t</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></mrow></mrow></mfrac></math></span> = -2kx. It is negative because the direction of elastic force is opposite to the direction of displacement.</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><msup><mrow><mrow><mi>d</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>x</mi></mrow></mrow><mrow><mrow><mi>d</mi><msup><mrow><mrow><mi>t</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></mrow></mrow></mfrac><mo>=</mo><mi></mi><mo>-</mo><mfenced open="[" close="]" separators="|"><mrow><mrow><mfrac><mrow><mrow><mn>2</mn><mi>k</mi><mi>x</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mfenced><mi>x</mi></math></span> = - <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>ω</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span> x, where angular frequency <span title="Click to copy mathml"><math><mi>ω</mi></math></span> = <span title="Click to copy mathml"><math><msqrt><mrow><mfrac><mrow><mrow><mn>2</mn><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></msqrt></math></span></p><p>Time period, T = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>2</mn><mi>π</mi></mrow></mrow><mrow><mrow><mi>ω</mi></mrow></mrow></mfrac><mo>=</mo><mn>2</mn><mi>π</mi><msqrt><mrow><mfrac><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn><mi>k</mi></mrow></mrow></mfrac></mrow></msqrt></math></span></p>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.