9.18 A rod of length 1.05 m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively. At what point along the rod should a mass m be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.
Where is the force exerted on steel wire and is the force exerted on aluminium wire
Taking a moment around the point of suspension, we get
=
= ……(ii)
Using equation (i) and (ii), we can
...more
Cross-sectional area of wire A, = 1 = 1
Cross-sectional area of wire B, = 2 = 2
Young's modulus for steel, = 2 N/
Young's modulus for aluminium, = 7 N/
Stress in the wire = =
If the two wires have equal stresses, then
= or = = ………(i)
Where is the force exerted on steel wire and is the force exerted on aluminium wire
Taking a moment around the point of suspension, we get
=
= ……(ii)
Using equation (i) and (ii), we can write
or y = 2.1 – 2y or y = 2.1/3 = 0.7 m
We know Young's modulus Y = Stress / Strain
Y = (F/A)/ Strain or Strain = (F/A)/Y
In case of Steel wire, =
In case of Aluminium wire, =
Since both the strains are equal, we get
= = = 1.429
From (ii) we get
= 1.429
y = 0.432m
In order to produce an equal strain in the two wires. The mass should be suspended at a distance of 0.432m from the end A
less
<p>Cross-sectional area of wire A, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></math></span> = 1 <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>m</mi><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span> = 1 <span title="Click to copy mathml"><math><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mo>-</mo><mn>6</mn></mrow></mrow></msup><msup><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span></p><p>Cross-sectional area of wire B, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></math></span> = 2 <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>m</mi><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span> = 2 <span title="Click to copy mathml"><math><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mo>-</mo><mn>6</mn></mrow></mrow></msup><msup><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span></p><p>Young’s modulus for steel, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></math></span> = 2 <span title="Click to copy mathml"><math><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mn>11</mn></mrow></mrow></msup></math></span> N/ <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span></p><p>Young’s modulus for aluminium, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></math></span> = 7 <span title="Click to copy mathml"><math><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mn>10</mn></mrow></mrow></msup></math></span> N/ <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>m</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span></p><p>Stress in the wire = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>F</mi><mi>o</mi><mi>r</mi><mi>c</mi><mi>e</mi></mrow></mrow><mrow><mrow><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mi>a</mi></mrow></mrow></mfrac></math></span></p><div><div><picture><source srcset="https://images.shiksha.com/mediadata/images/articles/1728553078phpOaHE51_480x360.jpeg" media="(max-width: 500px)"><img src="https://images.shiksha.com/mediadata/images/articles/1728553078phpOaHE51.jpeg" alt="" width="279" height="218"></picture></div></div><p>If the two wires have equal stresses, then</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> or <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></mfrac></math></span> ………(i)</p><p>Where <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></math></span> is the force exerted on steel wire and <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></math></span> is the force exerted on aluminium wire</p><p>Taking a moment around the point of suspension, we get</p><p><span title="Click to copy mathml"><math><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub><mi>y</mi></math></span> = <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub><mo>(</mo><mn>1.05</mn><mo>-</mo><mi>y</mi><mo>)</mo></math></span></p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mo>(</mo><mn>1.05</mn><mo>-</mo><mi>y</mi><mo>)</mo><mi mathvariant="normal"></mi></mrow></mrow><mrow><mrow><mi>y</mi></mrow></mrow></mfrac></math></span> ……(ii)</p><p>Using equation (i) and (ii), we can write</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></mfrac><mo>=</mo><mi></mi><mfrac><mrow><mrow><mo>(</mo><mn>1.05</mn><mo>-</mo><mi>y</mi><mo>)</mo><mi mathvariant="normal"></mi></mrow></mrow><mrow><mrow><mi>y</mi></mrow></mrow></mfrac></math></span> or y = 2.1 – 2y or y = 2.1/3 = 0.7 m</p><p>We know Young’s modulus Y = Stress / Strain</p><p>Y = (F/A)/ Strain or Strain = (F/A)/Y</p><p>In case of Steel wire, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>S</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>i</mi><mi>n</mi></mrow></mrow><mrow><mrow><mi>s</mi><mi>t</mi><mi>e</mi><mi>e</mi><mi>l</mi><mi></mi></mrow></mrow></msub></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub><mo>×</mo><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span></p><p>In case of Aluminium wire, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>S</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>i</mi><mi>n</mi></mrow></mrow><mrow><mrow><mi>a</mi><mi>l</mi><mi>u</mi><mi></mi></mrow></mrow></msub></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub><mo>×</mo><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span></p><p>Since both the strains are equal, we get</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>F</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub><mo>×</mo><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>1</mn></mrow></mrow></msub></mrow></mrow><mrow><mrow><msub><mrow><mrow><mi>a</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub><mo>×</mo><msub><mrow><mrow><mi>Y</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msub></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mo>-</mo><mn>6</mn></mrow></mrow></msup><mo>×</mo><mn>2</mn><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mn>11</mn></mrow></mrow></msup></mrow></mrow><mrow><mrow><mn>2</mn><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mo>-</mo><mn>6</mn></mrow></mrow></msup><mo>×</mo><mn>7</mn><mo>×</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mrow><mrow><mn>10</mn></mrow></mrow></msup></mrow></mrow></mfrac></math></span> = 1.429</p><p>From (ii) we get</p><p><span title="Click to copy mathml"><math><mfrac><mrow><mrow><mo>(</mo><mn>1.05</mn><mo>-</mo><mi>y</mi><mo>)</mo><mi mathvariant="normal"></mi></mrow></mrow><mrow><mrow><mi>y</mi></mrow></mrow></mfrac></math></span> = 1.429</p><p>y = 0.432m</p><p>In order to produce an equal strain in the two wires. The mass should be suspended at a distance of 0.432m from the end A</p>
Initially S? L = 2m S? L = √2² + (3/2)² S? L = 5/2 = 2.5 m ? x = S? L - S? L = 0.5 m So since λ = 1 m. ∴? x = λ/2 So white listener moves away from S? Then? x (= S? L − S? L) increases and hence, at? x = λ first maxima will appear.? x = λ = S? L − S? L. 1 = d - 2 ⇒ d = 3 m.
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.