A cell having N turns is would tightly in the form of a spiral with inner and outer radii 'a' and 'b' respectively. Find the magnetic field at centre, when a current I passes through coil:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <msub> <mrow> <mi>μ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mi>I</mi> </mrow> <mrow> <mn>8</mn> </mrow> </mfrac> <mrow> <mo>[</mo> <mrow> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mi>a</mi> <mo>−</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <msub> <mrow> <mi>μ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mi>I</mi> <mi>N</mi> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>l</mi> <mi>o</mi> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>b</mi> </mrow> <mrow> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <msub> <mrow> <mi>μ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mi>I</mi> </mrow> <mrow> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>−</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>[</mo> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>a</mi> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <msub> <mrow> <mi>μ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mi>I</mi> </mrow> <mrow> <mn>8</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>a</mi> <mo>−</mo> <mi>b</mi> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
2 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
V
4 months ago
Correct Option - 2
Detailed Solution:

Let us consider an elementary ring of radius r and thickness dr in which current is flowing.

So, No. of turns in this elementary ring

d N = ( N b a ) d r

( d B ) a t c e n t r e = μ 0 l d N 2 r

B = μ 0 l N 2 ( b a ) l n b a

Thumbs Up IconUpvote Thumbs Down Icon

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics Moving Charges and Magnetism 2025

Physics Moving Charges and Magnetism 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering