A particle is making simple harmonic motion along the X-axis. If at a distances x1 and x2 from the mean position the velocities of the particle are υ 1 a n d υ 2  respectively. The time period of its oscillation is given as:

Option 1 - <p>T = <span class="mathml" contenteditable="false"> <math> <mrow> <mn>2</mn> <mi>π</mi> <mroot> <mrow> <mfrac> <mrow> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>−</mo> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>−</mo> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>T</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mroot> <mrow> <mfrac> <mrow> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>−</mo> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>T</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mroot> <mrow> <mfrac> <mrow> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>−</mo> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mi>T</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mroot> <mrow> <mfrac> <mrow> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow> <mi>υ</mi> </mrow> <mrow> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mrow></mrow> </mroot> </mrow> </math> </span></p>
2 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
V
6 months ago
Correct Option - 1
Detailed Solution:

As we know that υ 2 = ω 2 ( A 2 x 2 )  for SHM, so

υ 1 2 = ω 2 ( A 2 x 1 2 ) . . . . . . . ( i ) , a n d υ 2 2 = ω 2 ( A 2 x 2 2 ) . . . . . . . . . ( i i )

Subtracting equation (ii) from equation (i), we have

υ 1 2 υ 2 2 = ω 2 ( x 2 2 x 1 2 ) ω = 2 π T = υ 1 2 υ 2 2 x 2 2 x 1 2 T = 2 π x 2 2 x 1 2 υ 1 2 υ 2 2

Thumbs Up IconUpvote Thumbs Down Icon

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics Oscillations 2025

Physics Oscillations 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering