A person of 80 kg mass is standing on the rim of a circular platform of mass 200 kg rotating about its axis at 5 revolutions per minute (rpm). The person now starts moving towards the centre of the platform. What will be the rotational speed (in rpm) of the platform when the person reaches its centre
A person of 80 kg mass is standing on the rim of a circular platform of mass 200 kg rotating about its axis at 5 revolutions per minute (rpm). The person now starts moving towards the centre of the platform. What will be the rotational speed (in rpm) of the platform when the person reaches its centre
-
1 Answer
-
By the principle of conservation of angular momentum, the total angular momentum of the system (platform + person) remains constant.
L_initial = L_final
I_initial * ω_initial = I_final * ω_final
Initial state: Person is on the rim.
I_initial = I_platform + I_person_rim = (1/2)M_platform R² + M_person R²
Final state: Person is at the center.
I_final = I_platform + I_person_center = (1/2)M_platform R² + 0
[ (1/2) (200)R² + (80)R²] * 5 rpm = [ (1/2) (200)R²] * ω_final
(100R² + 80R²) * 5 = (100R²) * ω_final
180R² * 5 = 100R² * ω_final
ω_final = (180...more
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers